Section 5-5: Direct Variation

Direct Variation is a special Linear Function.

• It has a constant ratio $\frac{Y}{X} = k$

k = the Variation Constant

• Direct Variation Equation:

4.75

$$\frac{y}{x} = k$$
 or $y = kx$

Does each table of values represent a Direct Variation relationship?

1		NO
	Χ	Υ
	6	28.5
	11	52.25
	19	89
	26	119.6
	42	201.6

•	. •	٠.	
	2.	ND	4
	Χ	Υ	$\frac{1}{\times}$
	4	5.4	1.35
	14	18.9	1.35 These are NOT equal
	22	21.6	0,9 NOT equal
	27	36.45	
	34	45.9	
			•

Graph of direct variation

• The graph must be a line that passes through the origin.

Does each table represent a Direct Variation relationship?

1.	ND			2.		NO	
X	Υ	POS POS NEG	Sometimes you can see that a relationship is NOT Direct Variation by considering if the ratio will be Pos or Neg or how big or small the ratio is.		Χ	Υ	
-6	-21				-5	-38	>
-4	-14				-2	-15.2	>
10	-35				4	30.4	>
15	52.5				12	91.2	>
18	63			•	45.6	18	<

Given the table shows a direct variation relationship, find the value of ?.

To solve Direct Variation situations you can use either equation or you can use a Proportion

and it passes through the ORIGIN

? = 18.75

Direct Variation Equations:

$$\frac{y}{x} = k$$
 or $y = kx$

Is each equation direct variation? If yes, find the variation constant.

If you can rewrite these equations to look like one of the above then they must be Direct Variation

1.
$$4x + 2y = 10$$

 $-4x$
 $2y = \frac{10}{2} - \frac{4x}{2}$

This isn't the same as y=kx so 4x+2y=10 is NOT Direct Variation

$$. 6 + 7y = 5 - 3x + 1$$

$$. 6 + 7y = 5 - 3x + 1$$

$$. 6 + 7y = 5 - 3x + 1$$

$$. 6 + 7y = 5 - 3x + 1$$

$$. 7y = -3x$$

$$. 7y = -3x$$

$$. 7y = -3x$$

is Direct Variation. $K = -\frac{1}{3}$

Yes, this equation

1. Use this table to write a Direct Variation equation.

Υ						
12.2						
54.9						
91.5						
109.8						
140.3						
	54.9 91.5 109.8					

X 6.1 = K 1 =61 or Y=61X

2. Find the value of x when y=50

Use one of the Direct Variation equations: $50 = 6.1 \times \longrightarrow \times = 8.20$

3. Find the value of y when x=20

You could also use a proportion to solve these problems.

Remember the phrase: "Y varies directly with X"

The amount of water in the tub varies directly with the amount of time the water has running. After 5 minutes there are 12 gallons in the tub.

1. Model this situation with a Direct Variation equation.

equation.

First find k:
$$k = \frac{Y}{X} = \frac{12g_{al}}{5 min} = 2.4 \text{ gal/min}$$
 $J = 2.4 \times \text{ or } \frac{Y}{X} = 2.4 \text{ gal/min}$

2. Find the amount of time it takes to fill a 32

OR use a Proportion:

Use one of the Direct Variation equations:

varies directly with the number of x workers in the factory.

When there are 120 workers on the job 270 air conditioners are manufactured.

The number of air conditioners built

1. What is the variation constant?

$$V = \frac{1}{X} = \frac{210 \text{ A.c.}}{120 \text{ work}}$$

$$V = 2.25 \text{ Ac}$$

2. Write a direct variation equation to model this situation. this situation. $\gamma = 2.25 \times \text{ ar} \quad \frac{\gamma}{\chi} = 2.25$

3. Find the number of air conditioners that can be produced if there are 140 workers present

Use one of the Direct Variation equations: