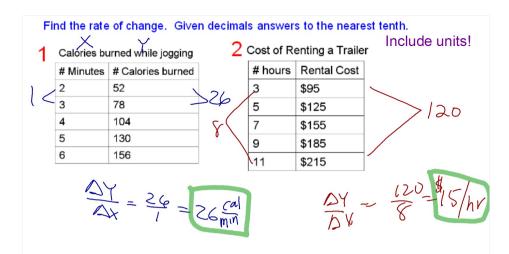
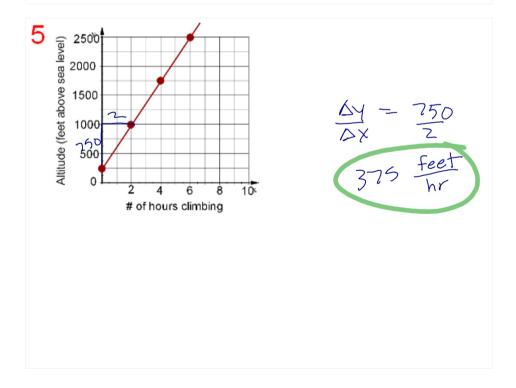
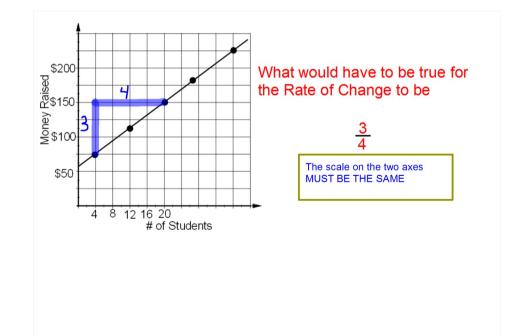

Change in the Dependent Variable

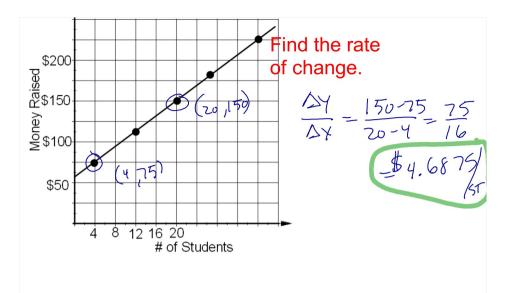

Rate of Change =


Change in the Independent Variable

Rate of Change =
$$\frac{\bigwedge Y}{\bigwedge X}$$
 Slope with units

Since the phrase Rate of Change applies when using "REAL" data you'll be expected to give units with your answer. Instead of fractions, give answers as decimals.





If the rate of change is constant then what will the graph of the data look like?

A linear function

You can now finish Hwk #24: Sec 6-1

Pages 286-288

Problems 1-4, 8, 9, 20-25, 49, 61, 62

Due Thursday

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$x_2 - x_1$$

Slope Formula:
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 rewrite this equation by mulitplying both sides by $x_2 - x_1$ $(x_2 - x_1)m = \frac{y_2 - y_1}{x_2 - x_1} \cdot x_2 - x_1$

$$y_2 - y_1 = m(x_2 - x_1)$$

You have just created the

Point-Slope Form for the equation of a Line.

Point-Slope Form for the equation of a line.

A line has a slope of m and passes through the point (x_1, y_1)

The equation of this line in Point-Slope Form is:

$$y - y_1 = m(x - x_1)$$
The y-coord Slope The

of any point on the line

of the line

The x-coord from the same point as the y-coord

Point - Slope Form of a Linear Equation:

Definiton

Point-Slope Form of a Linear Equation

The **point-slope form** of the equation of a nonvertical line that passes throught the point (x_1, y_1) with slope m is

$$y - y_1 = m(x - x_1)$$

Equations for a Line

- Slope-Intercept Form y=mx+b
- Standard Form Ax + By = C
- Point-Slope Form $y y_1 = m(x x_1)$