$$f(x) = -2x^2 + 10$$

g(w) = 10 - 3w

a) Find
$$f(-3)$$

$$-2(-3)^{2}+10$$

$$-2(-3)^{2}+10$$

$$-18+10$$

$$-(-3)=-8$$

$$f(x) = -2x^2 + 10$$

$$g(w) = 10 - 3w$$

c) Find
$$f(2)$$
 — $g(3)$
Subtract the results of $f(2)$ and $g(3)$

$$f(x) = -2x^2 + 10$$

$$g(w) = 10 - 3w$$

b) Find w when g(w) = 22

$$22 = 10 - 3W$$
 $-10 - 10$
 $12 - \frac{13}{5}W$

$$f(x) = -2x^2 + 10$$

$$g(w) = 10 - 3w$$

d) Find 7g(1)

Given the functions:
$$g(x) = -10x - 1$$

and
$$k(r) = -2r^2 + 5$$

1. Find k(-1)

$$= -2(-i)^2 +5$$

= -2(i) +5

=-2+5

2. Find 10k(-1)

Find k(-1) then multiply this by 10

You can now finish Hwk #19 Sec 5-2 pages 244-245 problems 2, 4, 24, 28-30, 32, 38-41, 44

Due tomorrow

Given the functions: g(x) = -10x - 1

and
$$k(r) = -2r^2 + 5$$

Find 2g(1) + 3k(2)

$$2(-11)$$
 $3(-3)$
 $-22+-9$
 $=-31$

Functions in Algebra 1:

Linear Functions:

EQ: y = mx + b

Graph: Line

Absolute Value Functions:

EQ: y = a|x - h| + k

Graph: V-Shape

Quadratic Functions:

EQ: $y = ax^2 + bx + c$ or $y = a(x - h)^2 + k$

y u(x 11) · 1

Graph: Parabola

Graphing Linear Functions.

Graph
$$y = 2x - 1$$

One method:

Set up a table.

$$\begin{array}{c|c} x & y \\ \hline -2 & -5 \rightarrow 2(-2) - 1 \\ \hline 0 & -1 \\ \hline 1 & 1 \\ \hline 3 & 3 \\ \end{array}$$

Graph y = 2x - 1

graph using the "other" method

Graphing Linear Functions. Another method

Slope-Intercept Form:

$$y = mx + b$$

y-intercept

 $slope = \frac{rise}{run}$

Steps to graph this eq:

- 1. Plot the y-int.
- 2. Use the slope to find more points.

Graph this line with at least 3 points.

$$y = \frac{-4x}{1} + 5^{\gamma - in + 1}$$

- 1. Start at 5 on the y-axis
- 2. From the y-intercept do a rise of -4 (down) and a run of 1 (right)
- 3. Repeat until you have enough points to graph the line.

OR

Set up a Table and plot the points that will fit on the graph.

these are the only ones that fit on the graph

