

$$y = -2(x - 1)^2 + 5$$

What will this graph look like?
parabola opens down

What will the vertex be? (5)

What numbers would you use in a table to find the rest of the graph?

Find the ratio $\frac{h}{d}$ for each post.

POST	h	d	<u>h</u>
1	1.5	4	1.5 = 3.75
2	3	8	3 = 375
3	4.5	12	15= 375
4	6	16	6 = 378
5	7.5	20	7.5 = .375

This shows that

$$\frac{h}{d} \text{ is a}$$
 Constant Ratio

Make a scatter plot of the data in the table.

Section 5-5: Direct Variation

Direct Variation is a special Linear Function.

• It has a constant ratio $\frac{Y}{X} = k$

k = the Variation Constant

• Direct Variation Equation:

$$\frac{y}{x} = k$$
 or $y = kx$

This Direct variation would have the following equation?

$$\frac{y}{x} = .375$$

Graph of direct variation

• The graph must be a line that passes through the origin.

Does each graph represent a Direct Variation relationship?

The only graph that is BOTH a line and passes through the origin is graph #3. This is the only Direct Variation relation.

Does each table of values represent a Direct Variation relationship?

Because the first two ratios will be larger than 1 and the third ratio will be less than 1 this relation is NOT Direct Variation

Because the third ratio is not the same as the first this is NOT Direct Variation