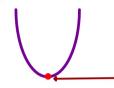
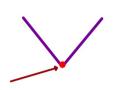

Graphs of Parabolas and V-shapes


Quadratic Functions

Absoltue Value Functions

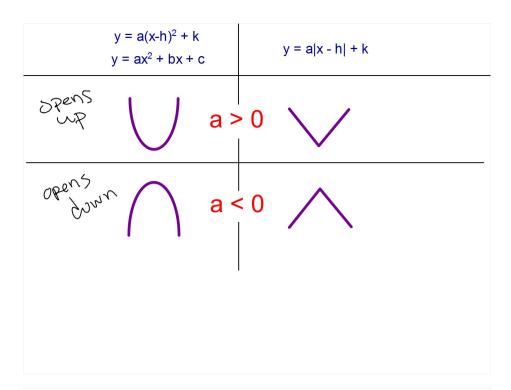

$$y = a|x - h| + k$$

$$y = a(x-h)^2 + k$$

$$y = ax^2 + bx + c$$

The Parent Function y = |x|

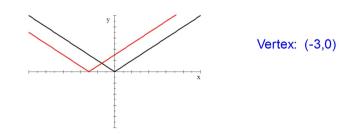
					V	1	1					
X	У										,	
x -2	2					4				/		
-1	1			\	_	,		_	/			
0	0		+	Ľ	1	_	L	_				
1	1	+	+	H	_	-	\vdash					>
2	2		-#	H	2		\vdash		-	- 4		X
			\top			-2	\vdash					
			T									
						-4						


What is the vertex of the Parent Function?

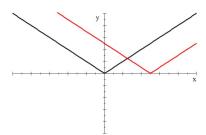
(0,0)

What is the slope of the sides of the Parent Function?

right side: slope = +1

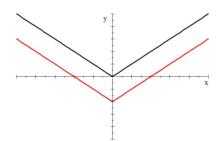

left side: slope = -1

Translations of y = |x| and y = -|x|


1. Graph $Y_2 = |x+3|$ How has this graph moved compared to the parent function? moved 3 units left

What are the coordinates of the vertex?

2. Graph $Y_2 = |x - 5|$ How has this graph moved compared to the parent function? moved 5 units right


What are the coordinates of the vertex?

Vertex: (5,0)

4. Graph $Y_2 = |x| - 4$ How has this graph moved compared to the parent function? moved 4 units down

What are the coordinates of the vertex?

Vertex: (0,-4)

- 3. a) What equation would move the graph of y = |x| 7 units to the left? = |x| 7
 - b) What equation would be a translation of y = |x| so that the vertex is (9,0)?

y= |x-9|

5. Graph $Y_2 = |x| + 6$ How has this graph moved compared to the parent function? moved 6 units up What are the coordinates of the vertex?

Vertex: (0,6)

- 6. a) What equation would move the graph of y = |x| 2 units up?
- b) What equation would be a translation of y = |x| so that the vertex is (0,-9)? 9

10. Describe the translations of the parent function y = |x|that each equation represents and state the coordinates of the vertex.

a.
$$y = |x - 8| + 7$$

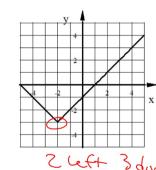
Description:

(8,7)

b. y = |x + 10| - 9

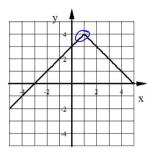
Description:

Use each description to write the equation of the absolute value function


7. The parent function v = |x| is moved 4 units right and 6 units down.

8. The parent function y = -|x| is moved 8 units up and 10 units left.

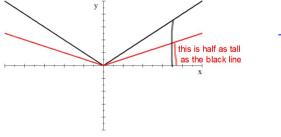
9. The parent function y = -|x| and the vertex is (-7, -5) Left 5 down


y=- (x+7)-5

11. The graph below is a translation of y = |x|. Write the equation of this function.

9 = |x + 2| = 3

12. The graph below is a translation of y = -|x| Write the equation of this function.

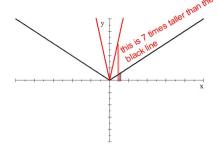


y= - (x-1) +4

Vertex is (1,4)

Opens down and graph moved 1 right and 4 up.

2. Graph $Y_2 = \frac{1}{2}|x|$ How does this graph compare to the parent function y = |x|?



2 as tal

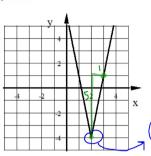
Streches and Shrinks

y = a|x| This equation represents either a strecth (taller) or a shrink (shorter) V-shape.

1. Graph $Y_2 = 7|x|$ How does this graph compare to the parent function y = |x|?

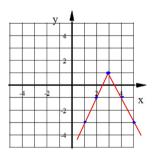
7 x Taller

3. Write the equation of an absolute value function that is one-fourth as tall as y = |x|

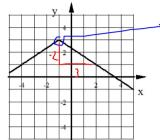

Y= 1/4 X

4. Write the equation of an absolute value function that is 3 times taller as y = |x| but opens down.

v = a|x|


a also represents the slope of the sides of the absolute value graph.

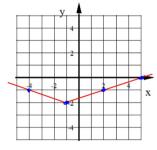
- 5. Write the equation of each absolute value function shown below:
- a) EQ:


Opens up Slope of sides = ± 5 moved 2 right and 4 down

- 6. Graph each absolute value function.
- y = -2|x 3| + 1

Graph opens down, two times taller (slope of sides = ± 2) graph moved 3 right and 1 up Vertex (3,1)

b) EQ:


Vertex is (-1,3) which means graph moved 1 left and 3 up.

Slope of sides is $\pm 2/3$

Opens down.

$$y = -\frac{2}{3} \left| x + 1 \right| + 3$$

b) $y = \frac{1}{3}|x+1| - 2$

vertex moved 1 left and 2 down (-1,-2) graph opens up and slope of sides is ± 1/3

Describe all the transformation of y=|x| each equation represents.

1.
$$y = -5|x + 9| - 3$$

2.
$$y = \frac{1}{4}|x-6| + 11$$

Opens down 5 times taller (slope of sides = ±5) moved 9 left and 3 down. Opens up 1/4 as tall (slope of sides = $\pm 1/4$) moved 6 right and 11 up.

Absolute Value Equations:

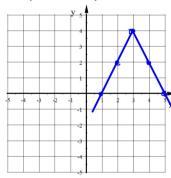
$$y = a|x - h| + k$$

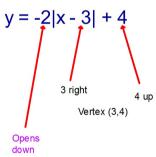
Vertex (h,k)

Slope of the sides: $m = \pm a$

actually the slope is a times the slope of the parent function:

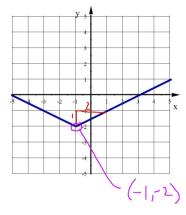
(a)(1) = a


Write the equation of each transformation of y=|x|


1. Translated 12 units up, 7 units left, opens down, and is 8 times taller.

2. Translated 2 units right, 13 units down, is one-third as tall, and opens up.

 $\mathcal{G} = \frac{1}{3} \left| x - Z \right| - 13$



Slope = 2 (twice as tall)

Write the equation of this graph:

$$y = \frac{1}{2} |x + 1| - 2$$