Where could you be located if you are 7 units from

zero?

You could be 7 units to the right

10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

You could also be 7 units to the left.

Absolute Value: Distance from zero on a number line.

$$|x| = 13$$

Where are you on a number line if you are exactly 13 units from zero?

You could be 13 units to the left of zero (-13) or 13 units to the right of zero (+13)

Section 3-6 Absolute Value Equations

What are possible values for x that make this statement true?

$$|x| = 13$$

because |-13| and |13| both equal 13:

Solve. |x| = 9

Since

OR

Solve.

| x | = 9

x is exactly 9 units from zero

$$x = -9$$

or

$$x = 9$$

Solve.

x + 2 is exactly 5 units from zero:

or

$$x + 2 = 5$$

01

Solve.

$$|5| = 5$$

or

X+2=5

X= 3 or

X-_ -7

Steps to solve Absolute Value Equations:

ex prob: Solve

$$|x - 3.5| + 2 = 12$$

|X-3.5| = |0| |X-3.5| = |0||X-3.5| = |0| What are possible values for x that make this statement true?

$$|x - 3| = 6$$

$$|6| = 6$$
 $|-6| = 6$
 $|-6| = 6$
 $|-6| = 6$
 $|-6| = 6$
 $|-6| = 6$
 $|-6| = 6$
 $|-6| = 6$
 $|-6| = 6$
 $|-6| = 6$
 $|-6| = 6$
 $|-6| = 6$
 $|-6| = 6$
 $|-6| = 6$
 $|-6| = 6$
 $|-6| = 6$
 $|-6| = 6$

Solve.
$$|x-2|+7=15$$
 $|x-2|=8$
 $|x-3|=8$
 $|x-3$

Solve. |2x+1|=13 2x+1=-13 2x+1=-13 2x-13 2x-14 2x-14 2x-14

Solve.
$$|x-5| + 18 = 8$$

$$-l8 - l8$$

$$|x-5| = -l0$$

the absolute value can't give -10 as an answer.

No Solution

Solve.

$$\frac{-3|8x|=-30}{-3} \\
|8x|=-10$$

$$8x = 10$$

$$8x = -10$$

Solve.

$$4|x+3|-9=23$$
 $4|x+3|=32$
 $4|x+3|=32$

Solve.

$$-2|x+1|-10=6 +10 +10$$

$$-2|x+1|=16
-2|x+1|=-8$$

No Solution. The absolute value can't equal a negative value

Solve.

Solve.
$$\frac{6|2.5x|}{6} = \frac{30}{6}$$

$$|2.5x| = 5$$

$$\frac{2.5x}{2.5} = \frac{5}{2.5} \text{ or } \frac{3.5}{3.5} = \frac{5}{3.5}$$

$$|2.5x| = 5$$

$$|2.5x| = 5$$

$$|2.5x| = 3$$

$$|2.5x| = 3$$

$$|2.5x| = 3$$

$$|2.5x| = 3$$

You can now finish Hwk #17

Page 170

Problems 16-21, 22, 49