What is a Function?

Some Relations are called Functions.

Every x value is paired with one and only one y value.

For every input there is only one output

Real-Life Functions and Non-Functions

You look up a word in the dictionary to get a definition:

Input (domain): A word Output (range): Definition

Is a Dictionary a Function?

a given word may have more than one meaning.

Other names for Domain and Range

Domain

- x-coordinates
- Input
- Independent Variable

Range

- y-coordinates
- Output
- Dependent

Variable

A policman looks up a license plate number to find who it is registered to:

Input (domain): License plate number Output (range): Who the car is registered to

Does this relationship represent a Function?

Yes

The IRS looks up a Social Security Number to find out who the tax return if for:

Input (domain): Social Security Number

Output (range): Taxpayers Name

Does this relationship represent a Function?

Yes

Which of the following is correct?

- 1. Every Relation is a Function Every Rectangle is a Square
- 2. Every Function is a Relation Every Square is a Rectangle

You look up a friend's name in your address book to find a number you can call them at:

Input (domain): Friend's name Output (range): Phone number

Does this relationship represent a Function?

ND

How can you tell if a graph represents a function?

Is a Function

that ARE and AREN'T Functions

Examples of graphs

Is NOT a Function

Is each of these relations a function?

a)

	X	Υ	
1	-2	4	
	3	1	
1	7	-6	
	4	1	
,	\supset		

Yes

b)

Yes

c)

d)

<u>Vertical Line Test:</u> If any vertical line can touch the graph more than once the relation is **NOT** a function.

Since the vertical line drawn intersects two points this graph is not a function.

These two points have the same x-coordinate but different y-coordinates which means for one input (x= -1) there is two outputs (y= 1 and y=3).

Is each of these relations a function?

no vertical line will touch the graph more than once because of the open circles.

Is each of these relations a function?

g)

No vertical line touches the graph more than once.

h)

The green vertical line touches the graph (red vertical line) an infinite number of times

If two y-coordinates repeat why IS the relation a function?

(-3, 2), (1, -4), (2, 2), (-5, 1)

Yes. It's okay if y-values repeat. These points create a Horizontal line and that is okay because no vertical line will touch a horizontal line more than once.

why isn't this relation a function?

(2,1), (-3,4), (5,-2), (2,-3)

If two x-coordinates repeat the two points would line up vertically and the graph would FAIL the Vertical Line Test

How do you say f(x)?

" f of x"

f is the function name

X is the Independent variable (the input)

What is another way to write
$$f(x) = 7x - 8$$
?

$$y = 7x - 8$$

$$f(x) = is just another way to write y =$$

$$If f(x) = -2x + 3$$

If f(x) = -2x + 3 what does f(5) mean?

Find f(5).

evaluate the function f when x=5.

13. If
$$f(x) = x^2 + 3x$$

find the range for this given domain: $Domain: \{-4,0,2\}$

Find each of the following:

$$f(-4) = (-4)^2 + 3(-4) = 16 + -12 = 4$$

$$f(0) = 0$$

$$f(2) = 2^2 + 3(2)$$

$$f(2) = 10$$

Given the functions: g(x) = -10x - 1

and
$$k(r) = -2r^2 + 5$$

1. Find g(5)

2. Find k(-3)

$$K(-3) = -2(-3)^{2} + 5$$

$$= -2(3) + 5$$

$$= -18 + 5$$

$$= -13$$

3. Find x if g(x) = 29

$$29 = -10x - 1$$

$$+1 \qquad +1$$

$$30 = -\frac{10}{-10}x$$

$$x = -\frac{1}{2}$$

You can now finish Hwk #19 Sec 5-2 pages 244-245 problems 2, 4, 24, 28-30, 32, 38-41, 44 Given the functions: g(x) = -10x - 1

and
$$k(r) = -2r^2 + 5$$

4. Find k(5) - g(3)

$$-45 - -31$$

$$(5) = -2(5)^{2} + 5$$

$$= -45$$

5. Find
$$2g(1) + 3k(2)$$

$$3(1) = 3(1) + 3(-3)$$
 $-22 - 9$
 $+(2) = 3(1)$