

Section 3-6: Absolute Value Equations

What are possible values for x that make this statement true?

$$|x| = 13$$

because |-13| and |13| both equal 13:

Solve.
$$|x+2|=5$$

 $|5|=5$ or $|-5|=5$
 $|5|=5$ or $|-5|=5$
 $|5|=5$ or $|5|=5$
 $|5|=5$ or $|5|=5$
 $|5|=5$ or $|5|=5$

$$|x-3| = 6$$

$$|6| = 6$$

$$|-6| = 6$$

$$|-6| = 6$$

$$|-7| = 6$$

$$|-7| = 6$$

$$|-7| = 6$$

$$|-7| = 7$$

$$|-7| = 7$$

Solve.
$$|x-2|+7=15$$
 $|x-2|-7=|5$
 $|x-2|-8|=8$
 $|x-3|=8$
 $|x-3|=8$

Solve.
$$\frac{-3|8x| = -30}{-3} \\
|8x| = -10$$

$$|-10| = 10 \text{ or } |10| = 10$$

$$|8x| = -10$$

$$|8x| = -10$$

$$|8x| = -10$$

$$|8x| = -10$$

$$|x| = -10$$

$$|x| = -10$$

$$|x| = -10$$

Solve.
$$\frac{-2|x+1|-10=6}{-2}$$

$$|x+1|-10=6$$

$$\frac{+10}{-2}$$

$$|x+1|=-8$$

$$|x-1|=-8$$

Solve.
$$\frac{6|2.5x|}{6} = \frac{30}{6}$$

$$|2.5x| = 5$$

$$|5| = 5 \quad \text{or } |-5| = 5$$

$$|5.5x = 5 \quad |5.5x = 5|$$

$$|5| = 5 \quad |5| = 5$$