Use the Quadratic Formula to find out how many real solutions will this quadratic equation have?

1. $18x^{2} - 12x + 2 = 0$ $b^{2} - 4ac = 0$ $\frac{12 \pm 10}{36}$ 2. $2x^{2} + 5x + 8 = 0$ $b^{2} - 4ac = -39$ $\frac{-5 \pm 1-39}{4}$ NO Sol 3. $-6x^{2} - 9x + 2 = 0$ $b^{2} - 4ac = 129$ 9 ± 1129 2 + 50NO Sol 3. $-6x^{2} - 9x + 2 = 0$ $b^{2} - 4ac = 129$ 9 ± 1129 2 + 50 2 + 50 $-5 \pm 1-39$ $-5 \pm 1-39$ $-5 \pm 1-39$ -12 Section 10-8: The Discriminant.

Discriminate:

to recognize the difference between; distinguish

The Discriminant in Algebra distinguishes the number of real number solutions to the Quadratic Formula.

Section 10-8: The	Discriminant. $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$
The part of the quadratic formula under the square root. $2a$	
$b^2 - 4ac$	
This determines the number of real solutions	
Discriminant	# of real solutions
lf b ² - 4ac > 0	2 real solutions
If $b^2 - 4ac = 0$	1 real solution
If b ² - 4ac < 0	No real solution

Use the Discriminant to find the number of real solutions each quadratic equation has?

1. $0 = 7x^2 - 32x + 4$ 2. $11x^2 + 7x - 3 = 0$ 3. $-2x^2 + 9x - 14 = 0$ 4. $9x^2 - 42x + 49 = 0$ 5. $-x^2 + 8x + 19 = 0$

1. $0 = 7x^2 - 32x + 4$

 $b^2 - 4ac = (-32)^2 - 4(7)(4) = 912$

Since the Discriminant is Positive the equation has 2 Real Solutions

2. $11x^2 + 7x - 3 = 0$

 $b^2 - 4ac = (7)^2 - 4(11)(-3) = 181$

Since the Discriminant is Positive the equation has 2 Real Solutions

3. $-2x^2 + 9x - 14 = 0$ $b^2 - 4ac = (9)^2 - 4(-2)(-14) = -31$

Since the Discriminant is Negative the equation has NO Real Solution

4. $9x^2 - 42x + 49 = 0$

 $b^2 - 4ac = (-42)^2 - 4(9)(49) = 0$

Since the Discriminant is Zero the equation has 1 Real Solution

5. $-x^2 + 8x + 19 = 0$

 $b^2 - 4ac = (8)^2 - 4(-1)(19) = 140$

Since the Discriminant is Positive the equation has 2 Real Solutions

An object is launched upward with a velocity of 200 ft/sec from a height of 25 feet.

 $h(t) = -16t^{2} + 200t + 25$ 1. Does the object ever reach a height of 500 feet? If yes, how many times? $0 = -16t^{2} + 200t^{2} + 300t^{2} + 300t^{2}$