
Algebra 1 Friday, May 29, 2015 Bellwork

- 1. Find the midpoint for each pair of point given.
- a) mipoint of (14, -9)&(6, -8) is
- b) midpoint of (-7, -3) & (42, -3) is ____
- Find the EXACT length of the segment connecting each pair of points.
- a) length of segment connecting (7,5)&(-9,1) is:
- b) length of segment connecting (6,-4)&(6,11) is:
- 3. Find the perimeter of triangle ABC using the coordinates for vertices A, B, and C given below. Round to the nearest tenth when needed.
- A(6,-3)
- B(-4,3)
- C(1,-3)
- Perimeter =
- 4. Rationalize each denominator. Simplify as much as possible.

b) $\frac{18w^2}{\sqrt{8w^3}}$

Friday, May 29, 2015 Bellwork Algebra 1

- 1. Find the midpoint for each pair of point given.
- a) mipoint of (14,-9)&(6,-8) is (10,-8.5) b) midpoint of (-7,-3)&(42,-3) is (17.5,-3) (-7+42,-3+3)
- 2. Find the EXACT length of the segment connecting each pair of points.
- a) length of segment connecting (7,5)&(-9,1) is: $\sqrt{(7-9)^2+(5-1)^2}=\sqrt{16^2+4^2}=\sqrt{272}=\sqrt{16\cdot 17}=\sqrt{4\sqrt{17}}$
- b) length of segment connecting (6,-4)&(6,11) is: 11--4=15
- 3. Find the perimeter of triangle ABC using the coordinates for vertices A, B, and C given below. Round to the nearest tenth when needed.

to the nearest tenth when needed.

$$A(6,-3)$$
 $B(-4,3)$ $C(1,-3)$ Perimeter = $(1.7 \pm 7.8 \pm 5) = 24.5$
 $AB = \sqrt{(b-4)^2 + (3-3)^2} = (1.7 + 3.8) = 7.8 + 3 = 7.8 + 4 = 6 - 1 = 5$

- 4. Rationalize each denominator. Simplify as much as possible.
- a) $\frac{48c^5}{\sqrt{6c}}$ $\frac{\sqrt{6c}}{\sqrt{6c}}$ = 48c5 VGC = 8c4 VGC

b)
$$\frac{18w^2}{\sqrt{8w^3}}$$
 $\sqrt{2\omega}$ = $\frac{16\omega^2\sqrt{2\omega}}{4\omega^2}$ = $\frac{9\sqrt{2\omega}}{2}$