The graph of $y=ax^2 + c$		
а	<u>a>0</u>	<u>a<0</u>
	Opens Up	Opens Down
	smaller a	bigger a
	Wider	Narrower
С	<u>c>0</u>	<u>c<0</u>
	Moves Up	Moves Down
	Vertex), C)

The lowest or highest point on a Parabola.

Vertical Line that passes through the Vertex.

Find the coordinates of the vertex and the equation of the LOS for each quadratic.

1. $y = x^2 - 3$ 2. $y = 5x^2 + 7$ $\frac{\text{Vertex}}{(0_1 - 3)}$ $(0_1 - 3)$ $\chi = 0$ $\chi = 0$ Graphing $y=ax^2 + c$ Graph $y = 3x^2 - 5$ with at least five points. Opens UP Moved 5 units down 1. Find the vertex $(o_1 - 5)$ 2. LOS: x = 03. Use a table to find two other points and plot them. $\begin{array}{c} x + y \\ 1 - z \\ 2 \\ 7 \end{array}$ 4. Use the LOS to find two more points. Connect these five points.

