Graphs of Exponential Equations Exploration

- E) What happens to the graphs as *b* increases? As the base increase the graph grows faster
- F) What point do all three graphs have in common? The same y-intercept (0,1)

Part 4

```
A) Leaving Y_1 = 2^x (this is where a = 1 \& b = 2) Graph in Y_2 and Y_3 y = a \cdot 2^x for 2 other positive values of a.
For example, graph Y_2 = 4 * 2^x and Y_3 = 8 * 2^x
```

B) Make a sketch of all three graphs, labelling each graph with it's equation.

C) Explain what changing the value of *a* does to the graph.

The value of a represents the y-intercept of the graph.

D) Now graph $y = a \cdot 2^{X}$ for a negative value of <i>a</i> . What does this do to the graph?	Part 5 Sec 8-8 page 440
$y = -1 \cdot 2^{X}$ It's a reflection of y=2 ^x over the x-axis (it's upside down) $y = -1 \cdot 2^{X}$ $y = 2^{X}$	A) When the value of b is between 0 and 1, $0 < b < 1$, then the equation $y = a \cdot b^X$ models Exponential Decay
-4 -2 0 2 x 4 -2 -2 -4	and b is called the

The closer the base is to 1 the

flatter the graph.

Does each exponential equation represent growth or decay?

A = Growth B = Decay

1.
$$y = 4500(0.9983)^{x} \operatorname{decay}$$
 4. $y = 12.06\left(\frac{42}{39}\right)^{x}_{\text{growth}}$
2. $y = 0.045(1.00201)^{x} \operatorname{growth}$
3. $y = 7\left(\frac{12}{13}\right)^{x}_{\text{decay}}$ 5. $y = 145(1.33)^{-x}_{\text{decay}}$

Find the y-intercept for each:		
1. $y = 12(0.105)^x$	2. $y = 5.7(1.62)^x$	
y-int = 12	y-int = 5.7	
3. y = 8 ^x y-int = 1		