Finding the Line of Symmetry:

$$y = ax^2 + bx + c$$

LOS:
$$X = \frac{-b}{2a}$$

"opposite of b divided by 2a"

Ways to find x-intercepts of a quadratic function (solving the equation when y=0):

- Factoring
- Graphing
- Square Roots
- Quadratic Formula

When a quadratic is in Standard Form: $y = ax^2 + bx + c$ the y-intercept is always the constant (c).

If the g-int of a

Parabola is 0

find an x-int.

Finding the x-intercepts by factoring: (solving for x when y=0)

- 1. Replace y with zero
- 2. Factor the other side
- 3. Find the zeros of each factor

Use the graph below to solve this equation:

$$x^2 - 3x - 4 = 0$$

$$x = -$$

they are the x-intercepts of the graph.

Now factor the quadratic:

$$(x - 4)(x + 1)$$

What are the zeros of the factors?

Another technique to solve quadratic equations that can be used SOMETIMES is using Square Roots

Ex: Solve using square roots by

- 1. $get x^2 by itself$
- 2. take the square root of both sides

Solve
$$3x^2 - 12 = 0$$
 $= \pm 2$

How do these solutions relate to the graph of $y = 2x^2 - x - 28$?

They are the x-intercepts of the graph

Factor
$$0 = 3x^2 - 12$$

 $0 = 3(x^2 - 4)$
 $0 = 3(x + 2)(x - 2)$

Find the zeros of each factor.

You can only solve a quadratic equation using SQUARE ROOTS if b = 0there is no x term

Solve each quadratic equation using square roots.

1.
$$x^2 - 64 = 0$$

 $+64 + 64$
 $\times = \pm 8$

2.
$$4x^2 - 25 = 0$$

3.
$$18x^2 - 98 = 0$$

$$\sqrt{\chi^2} = \frac{98}{18} = \sqrt{\frac{49}{9}}$$
 $\chi = \pm \frac{1}{3}$

Simplifying Square Roots

simplify each.

1.
$$\sqrt{49} =$$

1.
$$\sqrt{49} = 7$$
 2. $\sqrt{100} = 60$

3.
$$\sqrt{169} = 1$$

3.
$$\sqrt{169} = 13$$
 4. $\sqrt{324} = 18$

Not all numbers are perfect squares.

How would you simplify $\sqrt{75}$ without rounding?

Perfect Squares:

9

16 25

36 49

64

81 100

Simplify each.

2.
$$\sqrt{32}$$

This is called the Exact value since it isn't rounded. It's in simplified radical form.