$$y = x^2 - 10x + 26$$

Χ	Υ				
-2	50				
-1	37				
0	26				
1	17				
2	10				

These points won't fit on the graph!

	v										
		8									
		6									
		Ĥ									
		4									
		Н									
		2									
		\vdash									
4	-2	\forall	+	2	4	ı	5	8	3	1	0
		\Box									X
		-2									
		4									

Finding the Line of Symmetry:

$$y = ax^2 + bx + c$$

LOS:
$$X = \frac{-b}{2a}$$

"opposite of b divided by 2a"

$$y = x^2 - 10x + 26$$

How would it help if you know the LOS was

Find the equation for the LOS in each Quadratic

1.
$$y = 3x^2 + 12x - 8$$

2.
$$y = x^2 - 8x +$$

$$X = \frac{-12}{6} = -$$

3.
$$y = -2x^2 + 20x + 33$$

4.
$$y = -x^2 + 9x - 1$$

$$x = \frac{-4}{50} = 5$$

1.
$$y = 3x^{2} + 12x - 8$$

 $\chi = \frac{-12}{6} = -2$
2. $y = x^{2} - 8x + 3$
 $\chi = \frac{8}{2} = 4$
3. $y = -2x^{2} + 20x + 33$
 $\chi = \frac{-20}{-4} = 5$
4. $y = -x^{2} + 9x - 1$
 $\chi = \frac{-9}{-2} = 4.5$

Find the LOS:

$$y = 2x^2 + 16$$

When there is no b term the LOS is always: x = 0

Graph this quadratic using at least 5 points.

 $y = x^2 + 8x + 13$

LOS

Once you've found the LOS what part of the parabola can you now find? **VERTEX**

$$y = 2x^2 - 16x + 7$$

 $y = 2x^2 - 16x + 7$ 32 - 64 + 7Find the equation for the LOS and the coordinates of the vertex

LOS:
$$X = \frac{16}{4} = 4$$

Vertex: $(4, -25)$

Important characteristics of a Parabola to know:

- Equation for the LOS
- Coordinates of the Vertex (🗸
- Does parabola open up or down
- Is the Vertex a Maximum or a Minimum
- Y-intercept
- X-intercept(s)

To find the y-intercept of any function you simply replace x with zero and find y.

Find the y-intercept of each quadratic.

1.
$$y = 3x^2 - 6x + 10$$

2.
$$y = -5x^2 + x - 7$$

3.
$$y = 8.3x^2 + 13x$$

Do the following for this quadratic:

$$y = -4x^2 - 24x + 19$$

- a. Write the eq for the LOS. $\times = \frac{34}{2(-4)} = \frac{24}{-8} = -3$
- b. Write the coordinates of the Vertex. (-3,55)
- c. Find the y-intercept.
- d. Is the vertex a Max or a Min? Max
- Narrow e. Is the parabola wide or narrow?

When a quadratic is in Standard Form: $y = ax^2 + bx + c$ the y-intercept is always the constant (c).

The x-intercepts of a quadratic are found by replacing y with zero and SOLVING for x.

Solving Quadratic Equations:

A Quadratic Equation has the following form:

$$ax^2 + bx + c = 0$$
 This means y = 0

When y=0 the corresponding value of x is the x-intercept of the graph.

Solutions to this equation are:

- zeros of the function
- x-intercepts of the graph

Given this quadratic function: $y = x^2 + 2x - 3$

Find the x-intercepts by following these steps:

llowing these steps:
$$0 = \chi^2 + 2\chi - 3$$

$$0 = (\chi + 3)(\chi - 1) + 3\chi - 1$$

2. Factor the right side

3. Find the zeros of each factor
$$\chi_{-}$$
 - η_{\parallel}

Ways to find x-intercepts of a quadratic function (solving the equation when y=0):

- Factoring
- Graphing
- Square Roots
- Quadratic Formula

$$y = x^2 + 2x - 3$$

This graph shows that the solutions to the equation:

$$0 = x^2 + 2x - 3$$

are the same as the x-intercepts of the graph.

2 solutions (2 x-intercepts)

1 solution (1 x-intercept)

No Solution (0 x-intercepts)

Find the x-intercepts of this quadratic function:

$$y = x^{2} - 13x + 30$$

$$O = \chi^{2} - 13x + 30$$

$$O = (\chi - 3)(\chi - 10)$$

$$X = 3 + 10$$

$$(30)$$

$$- 3$$

$$- 10$$