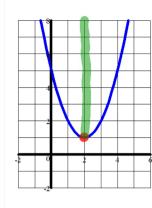

Section 10-1: Graphs of Quadratics

Standard Form of a Quadratic Function:

$$y = ax^2 + bx + c$$

Graph of a quadratic equation is a Parabola



Coordinates of the

Vertex (____, ___)

Eq for the LOS: X=Z

What is the relationship between the Line of Symmetry (LOS) and the vertex of a parabola? The Equation for the LOS and the x-coord of the vertex are ALWAYS the same

Vertex

Line of Symmetry LOS

Axis of Symmetry

Does this parabola open Up or Down?

40

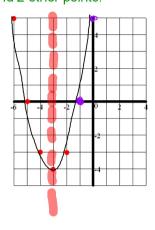
The vertex of a parabola is the point (-5, 8)

What is the equation for the LOS?

The quadratic $y = x^2 + 6x - 1$ has the following LOS: x = -3

What are the coordinates of the vertex?

$$(\frac{-3}{7},\frac{-10}{10})$$
 $(\frac{-3}{7},\frac{-10}{10})$
 $(\frac{-3}{7},\frac{-10}{10})$


Tell if each parabola has a Maximum or a Minimum:

 $y = 3x^2 - 4x - 1$

Match the equations below to the graphs above.

$$y = 3x^2 - 4x - 1$$
 $y = -x^2 + 2x$

Given the following points of a parabola find 2 other points.

(-6, 5) (-5, 0) (-4, -3) (-3, -4) (-2, -3)

Use the line of symmetry and reflect points from the left side onto the right side.

Given the quadratic $y = ax^2 + bx + c$

The parabola opens up if: $\alpha > 0$ Ver lex is min

The parabola opens down if: $Q \leq 0$ Vertex is max

$$y = ax^2 + bx + c$$

What the coefficient a does to the graph of a parabola.

a>0 parabola opens up

a<0 parabola opens down

Put these parabolas in order from widest to narrowest.

Widest
$$y = -0.14x^2 + 8x + 14$$

$$y = 0.2x^2 + 92$$

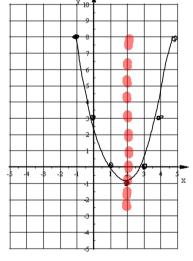
$$y = -1.3x^2 - 4x + 11$$

$$y = 4x^2 - 27x - 100$$

Narrowest $y = -6x^2 + x - 75$

a

as |a| >1 the more narrow the parabola gets.


bigger is more narrow

as 0<|a|<1 the wider the parabola gets.

smaller is wider

Graphing Quadratics: Use at least 5 points.

Graph:
$$y = x^2 - 4x + 3$$

Solving Quadratic Equations:

A Quadratic Equation has the following form:

$$ax^2 + bx + c = 0$$
 This means $y = 0$

When y=0 the corresponding value of x is the x-intercept of the graph.

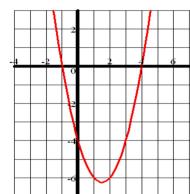
Solutions to this equation are also:

- zeros of the function
- x-intercepts of the graph

Solve by factoring:

$$x^{2}-2x-8=0$$
 $(x+2)(x-4)=0$ -4 $= -2,4$

How do these solutions relate to the graph of $y = x^2 - 2x - 8$?


They are the x-intercepts of the graph

Use the graph below to solve this equation:

$$x^2 - 3x - 4 = 0$$

they are the x-intercepts of the graph.

