Bellwork Friday, June 6, 2014

1. Find the equation for the LOS and the coordinates for the vertex of each quadratic.

a)
$$y = 4x^2 - 16x - 7$$

a)
$$y = 4x^2 - 16x - 7$$

b) $y = -x^2 + 12x - 13$
 $105 \quad \chi = \frac{16}{5} = 2$

c)
$$y = 5x^2 + 20$$

LOS
$$X=0$$

Vertex $(0,20)$

136 472-13

$$y = -x^2 + 12x - 13 - 12$$

3. Graph the following quadratic using the vertex

2. Find the y-intercept for each quadratic.

a)
$$y = -3x^2 + 6x - 7$$

a)
$$y = -3x^2 + 6x - 7$$
 b) $y = 9x^2 + 7x + \bigcirc$

c)
$$y = 4x^2 + 3x + 18$$

4. Find the x-intercepts of the graph of the following quadratic by factoring: $y = x^2 + 6x - 16$

 $-2 + 8 \quad 0 = x^{2} + 6x - 16$ $-2 + 8 \quad 0 = (x-2)(x+8)$ $+6 \quad x = 2 - 8$

5. Given the x-intercepts of a parabola are 4 and 14 find the equation for the LOS.

1 LOS X= 4+14= 9