Using a graphing calculator graph the following in

Y₁ using a standard window.

$$X_{min} = -10$$

$$Y_1 = x^2$$

$$X_{\text{max}} = 10$$
$$Y_{\text{min}} = -10$$

$$Y_{min} = -10$$

 $Y_{max} = 10$

This is the Parent Quadratic Function

Leave
$$Y_1 = x^2$$

In Y_2 enter equations like this: $Y_2 = ax^2$ using

$$Y_2 = ax^2 using$$

different NEGATIVE values for a. Notice how the graph changes and make some conclusions about what the value of a

does to the graph.

$$Y = ax^2$$
$$a = 1$$

Leave
$$Y_1 = x^2$$

In Y₂ enter equations like this:

$$Y_2 = ax^2$$
 using
different POSITIVE values for a.
Notice how the graph changes
and make some conclusions
about what the value of a

$$Y_1 = ax^2$$

a = 1

a = 1

does to the graph.

Complete each statement.

$$y = ax^2$$

- When a is positive and bigger than 1 the graph
- When a is positive and between 0 and 1the graph
- When a is negative the graph

Put the following quadratic functions in order from Widest to Narrowest:

A.
$$y = x^2$$

B.
$$y = 7x^2$$

C.
$$y = 0.75x^2$$

D.
$$y = 0.2x^2$$

E.
$$y = 3x^2$$

Widest

Narrowest

Match each equation to it's graph.

$$y = 0.25x^2$$
 $y = -5x^2$

$$y = -0.1x^2$$
 $y = 10x^2$ $y = -x^2$

___ $y = 2x^2$

