The Difference of Perfect Squares

$$a^{2} - b^{2}$$

A binomial that has this form always factors into the following:

$$a^2 - b^2 = (a + b)(a - b)$$

$$a^2 - b^2 = (\sqrt{1^{\text{st}} \text{ term}} + \sqrt{2^{\text{nd}} \text{ term}})(\sqrt{1^{\text{st}} \text{ term}} - \sqrt{2^{\text{nd}} \text{ term}})$$

Factor each.

$$M^2 - 121 = (m-1)(m+1)$$

$$G^2 - 16 = (\zeta_{+4})(\zeta_{-4})$$

$$K^2 - 625 = (K-25)(K+25)$$

$$9B^2 - 49 = (367)(36+7)$$

$$25M^6 - 36N^{10} = (5m^4 of)(5m^2 ch)$$

To be considered the Difference of Perfect Squares:

- Coefficients and constants must be perfect squares.
- Exponents must be even.

Is this the Difference of Perfect Squares?

5c² - 45 It doesn't appear to be because 5 and 45 aren't perfect squares.

Factor out the GCF and notice what you get

$$5(c^2 - 9)$$
 $5(c + 3)(c - 3)$

This is called "Factored Completely"

Steps when factoring:

Step 1: Take out GCF, if there is one

Step 2: After taking out GCF, see if what is in parentheses can be factored further.

Do the Prime Factorization of 12

Sometimes factoring takes multiple steps.

Do the Prime Factorization of 10

Factor each COMPLETELY: Factor using GCF First

1.
$$2c^2 - 72$$

 $2(c^2 - 36)$
 $2(c - 6)(c + 6)$

$$m (m^2 - 25)$$

 $m (m+5)(m-5)$

3.
$$12g^3 - 48g$$

4.
$$32c^5 - 98c^3$$

Factor Completely

$$\frac{1}{9}a^2 - \frac{1}{25}$$

$$(\frac{1}{3}a + \frac{1}{5})(\frac{1}{3}a - \frac{1}{5})$$

Hwk #29:

Sec 9-7

Pages 493-494

Problems 14, 15, 22, 23, 31, 32, 60