The population of a city in 1950 was 25,800. The population has been increasing 2.75% each year.

100+2.75 = 102.75.

1. Write an exponential equation to model this situation:

$$y = a (b)^{\times} \longrightarrow y = 25,800(1.0275)^{\times}$$

2. Find the population in 2000?
$$\chi = 50$$

3. What was the population in 1945?

You invest \$20,000 in an account that pays 7.5% annual interest.

What is the initial amount? $\alpha = 20,000$

What is the growth factor? b = 1.005

How much will you have in 30 years?
$$20_1006(1.075)^{30}$$

The value of a business has been decreasing 7.8% each year. The value of the business in 2008 was \$575,000.

106-78=922.5= 0.922 1. Model this situation with an exponential equation.

 $y = a (b)^{x} \longrightarrow y = 575,000 (0.922)^{X}$

2. Find the value of the business in 2015. \$325.674.90 X=7

The number of bacteria cells doubles every 30 minutes.

If there are 40 cells at noon, how many will there be at 6:00pm that same day?

$$a=40$$
 $b=2$
 $y=40(2)^{x}=40(2)^{12}$
 $=163.846$

How many would there be if the cells doubled every 20 minutes?

$$40(2) = 10,485,760$$

The number of cells doubles every 10 minutes.

There are 75 cells at 1:00pm. Find the number of cells at 1:45pm the same day.

 $y = a(b)^{x}$ $y = 75(2)^{x}$ y = 16971:45 pm

1:45 pm

The half-life of a radioactive substance is 40 minutes. There are 500 grams of this substance at 4:00pm. How much remains at 7:00 pm the next day?

$$y = 500(-5)^{x_0}$$
 = 1620 min
 $\frac{1}{40}$ min
 $\frac{1}{$

The half-life of a certain medication is 2 hours.

If you take a 240mg dose of this medication at 8:00 am, how much will still be in your system at noon the same day?

$$y = a(b)^{x}$$
 $x = 4hr = 3$
 $y = a(b)^{x}$ $y = 3hr = 3$
 $y = 3 + 3(5)^{2} = 60 \text{ mg}$