Write the equation of the line that is parallel to:

$$y = 3x - 8$$

and passes through the point (-1, 7) m = 3

Rewrite both of these equations in slope-intercept form.

$$15x + 5y = 15$$

$$2x - 6y = 6$$

$$y = - \left| \left(\frac{1}{3} \right| \right|$$

Graph these two equations using the x and y intercepts:

$$15x + 5y = 15$$

$$2x - 6y = 6$$

$$X - 117 = 3$$

How are these lines related?

Perpendicular

ei pei idiculai

Perpendicular Lines have:

- Opposite Reciprocal Slopes
- y-intercept DOESN'T MATTER!

Find the opposite reciprocal of each.

a)
$$\frac{-8}{1}$$
 Opp Reciprocal= $\frac{1}{8}$ Department of $\frac{1}{8}$ Opp Reciprocal= $\frac{1}{8}$ Opp Reciprocal= $\frac{7}{2}$ Opp R

c)
$$2\frac{5}{6} = \frac{10}{6}$$

d)
$$3.5 = 3\frac{1}{2} = \frac{7}{2}$$

Opp Reciprocal= -

Are these lines Parallel, Perpendicular, or Neither?

1.
$$y = 4x - 1$$

1.
$$y = 4x - 1$$
 2. $y = 2x + 3$

$$y = \frac{1}{4}x + 8$$

$$y = -2x - 5$$

3.
$$y = 5x - 2$$

4.
$$x = 9$$
 \rightarrow Vertica

$$3x + 15y = -30$$

1.
$$y = 4x - 1$$

$$y = \frac{1}{4}x + 8$$

$$y = -2x - 5$$

Nother

3. $y = 5x - 2$

$$3x + 15y = -30$$

$$y = -30 - 3x$$

$$4. x = 9 \Rightarrow \text{Vertical}$$

$$y = 1 \Rightarrow \text{Hows}$$

$$y = -30 - 3x$$

Are these numbers opposite reciprocals?

a)
$$-\frac{4}{5}$$

$$1\frac{1}{4} = \frac{5}{4}$$

b)
$$\frac{16}{12} = \frac{4}{3} \& -\frac{3}{4}$$

$$-\frac{3}{4}$$

c)
$$0.4$$
 & -2.5 $(0.4)(-2.5)=-1$

Numbers are opposite reciprocals if their product is -1

Write the equation of the line Perpendicular to:

$$y = -4x + 3$$

$$M = -\frac{4}{1}$$

and passes through the point (-8, 1)

$$-1 = \frac{1}{4} \left(x + 8 \right)$$

$$y = \frac{1}{4}x + \frac{3}{2}$$

Use this line: $y = \frac{3}{2}x + 4$

1. Write the equation of the line that is perpendicular to this line and passes through the point (-6,1)

$$y-1=-\frac{2}{3}(x+6)$$
 -> $y=-\frac{2}{3}x-3$

2. Write the equation of the line that is parallel to this point and passes through the point (8,5)

sees through the point (8,5)
$$y-5=\frac{3}{2}(x-8) \qquad y = \frac{3}{2}x-7$$