Is the point (2, 3) a solution to this system of equations? Yes. (2,3) makes both equations true.

$$y = 2x - 1$$
 $y = -4x + 11$ 
 $3 = -4(2) + 1$ 
 $-8 + 11$ 
 $3 = 3$ 

2. None

$$y = 2x$$
 and  $y = 2x + 8$ 



Lines are parallel

If two lines are graphed together, how many points of intersection can there be?



3. Infinitely Many

$$y = 2x - 1$$
 and  $8x - 4y = 4$ 

$$y = \frac{4}{3}$$
They are the same line.





same line.

Without graphing how can you tell the number of solutions a system of equations will have?

Find the slope and y-intercept of each line to see if they are parallel, the same line, or will intersect at some point.

| How many solutions does each system of linear |  |
|-----------------------------------------------|--|
| equations have?                               |  |

1. y = 2x - 7 4x - 8y = 24 4x - 8y = 24

3.  $y = \frac{4}{5}x + 2$  OUE) 15x + 12y = 36

5x + 12y = 36  $4 - \frac{36 - 15x}{2}$ M \( \frac{4}{5} \)

| 2. $y = -3x + 1$ | NONE   |
|------------------|--------|
| 6x + 2y = 8      | y=8-6x |
| 4.               | b= 4   |

| y = -6x + 5 $12x + 2y = 10$ $0$ |
|---------------------------------|
| 12x + 2y = 10 $000  MeV$        |
| (MAI)                           |
| m= b=5                          |

| Number of solutions to systems of linear equations |                                                      |  |
|----------------------------------------------------|------------------------------------------------------|--|
| # of Solutions                                     | How do you tell without graphing                     |  |
| One Solution:                                      | Lines have a different slope                         |  |
| No solution:                                       | Parallel Lines  • same slope • different y-intercept |  |
| Many Solutions:                                    | Same lines • same slope • same y-intercept           |  |

## Sec 7-1:

Solving a System of Equations by graphing

• 1 sol, No sol, Many sol's

Hwk #14:

Sec 7-1

Pages 343 - 344

Problems 2, 8, 10, 11, 19-22

Use the sheet I've printed for you.

Find the solution to this system of linear equations by graphing.

$$y = 2.1x - 6$$

Students were shown how to use the graphing calculator to solve a system of equations

$$y = -3.2x + 1$$

by graphing.

Solve this system of equations by graphing:

$$y = 2x - 1$$



Solution is non-integer coordinates.

Graphing with paper and pencil isn't the best way to solve this system.

Solve:

$$-4x - 5 = -2x + 1$$

$$-2x - 5 = 1$$

This was practice for the kinds of skills necessary to solve a system of equations with Algebra.

Sec 7-2: Solving a system of equations using substitution



Solve. 
$$4x - 3(2x - 10) = 24$$
  
 $4x - 6x + 36 - 30$   
 $-2x = 6$   
 $-2x = 6$ 





Solve using substitution.  

$$y = -4x + 1$$
  $6x - 2y = -44$   
 $6x - 2(-4x+1) = -44$   
 $6x - 2(-4x+1) = -44$   
 $6x - 2(-4x+1) = -44$   
 $6x - 2y = -42$   
 $6x - 2y = -4$