If the rate of change is constant then what will the graph of the data look like?

A linear function

Sec 6-4: Point-Slope Form

$$y - y_1 = m(x - x_1)$$

If m is the slope of a line and (x_1, y_1) is a point on the line, then the equation of the line in Point-Slope Form is:

Slope =
$$S \rightarrow S - 2 = S(x+9)$$

Equations of Lines:

Slope-Intercept Form: y = mx + b

Standard Form: Ax + By = C

Point-Slope Form: $y - y_1 = m(x - x_1)$

Horizontal Lines: y = #

Vertical Lines: x = #

Write the equation of each line in Point-Slope Form.

1. The slope of the line is 8 and the line passes through the point (-9, 14).

2. The points (6, -1) and (-4, 11) are on the line.

$$\frac{||+t|}{5} \frac{12}{4^{-}6} = \frac{6}{10} = \frac{6}{-5}$$

$$4 + 1 = \frac{6}{-5} (x - 6)$$

$$9 - 11 = \frac{6}{-5} (x + 4)$$
or

Real situations can be modeled with both Slope-Intercept Form and Standard Form.

Point-Slope doesn't model many, if any, real situations.

1. Your phone company charges you \$45 a month plus 10 cents per text sent. Write an equation to model your Slope on a graph

15 + 10 x rate of change

4 yint on a graph state 1Nb

at the sporting goods stars monthly bill.

2. You spend \$170 at the sporting goods store purchasing 4 volleyballs and 2 basketballs.

Sec 6-2: Slope-Intercept Form

$$y = mx + b$$

Slope Y-intercept

Writing the equation of a line in Slope-Intercept Form:

Write the equation of the line that passes through these two points in Slope-Intercept Form

Method 1:

First: Find the slope.

$$M = \frac{11 - 8}{-2 - 3} = \frac{35}{-5} = -5$$

Second: Write the equation in Point-Slope Form (154)(31-8) (154)(31-8) (154)(31-8) (154)(31-8)

Third: Change Point-Slope into Slope-Intercept

Use Distributive Property then subtract 8 from both sides