The following steps DON'T affect the direction of the inequality:

- Adding the same number (pos or neg) to both sides
- Subtracting the same number from both sides
- Multiplying both sides by the same positive number
- Dividing both sides by the same positive number

Compound Inequalities:

Two Inequalities connected with one of the following words:

AND

p > 3 and p < 8

OR

(a < 1 or a > 5

Sec 3-3: Solving Inequalities Using Multiplication and Division

The following steps **DO** affect the direction of the inequality:

- Multiplying both sides by the same negative number
- Dividing both sides by the same negative number

Graphing and Writing compound inequalities

p > 3 and p < 8

Because this graph is only one part of the number line you can write the inequality as a single statement:

a < 1 or a > 5

Because this graph is two separate parts of the number line the inequality must remain in two parts.

$$a < 1 \text{ or } a > 5$$

Write the inequalities that model each graph.

To check your answer to an inequality you must check both

- the starting point and
- the direction of the "arrow"

When solving an inequality:

- Take the same steps as if it were an equation
- The only difference is that you must flip the inequality when you multiply or divide both sides by a negative.

1.
$$9x + 3(x-4) - x \ge -36$$

$$9x + 3x - 12 - x \ge -36$$

$$||x - 12| \ge -36$$

$$||x - 24| \ge -24$$

$$|x \ge -24| \ge -36$$

Check your answer

Check the starting point

Test -24/11 to see if both sides

Check the direction of the inequality

Test a number greater than -24/11 to see if the left side is greater than the right side.

