

 $\underline{\text{Ex 6}}$: Let's find the mean, variance, and SD of the probability distribution that showed the test scores for passive-aggressive traits.

x		1	2	3	4	5	- 4 40	variance
P	(x)	0.16	0.22	0.28	0.20	0.14	mean	
		X	Pl	(x)		X	P(X)	$(X-u)^2 \cdot P(X)$
			0.	16		0.	16/	$(1-2.9)^{3}(.16) = .5776$
		2	0.	ລ່ວ		0.	44	(2-2.9)2(-22)=.1782
		3	0.	38		0.	84	(3-2.9)2(.28)=.0028
		4	-	20		0/	&Q	
		5	٥,	14		ø.	70	.242
						Σ=	= 2.94	Z= 1.618 (03)
						γ	Q	SD=V1.618=1.3

*The average score is _____, and most scores are within units of the mean.

TIY 6: Find the mean, variance, and SD of the probability distribution in Ex 2 (below).

Sales per day, x	Number of days, f	P(x)	$X \cdot P(x)$	$(X-M)^2 \cdot P(X)$
0	16	.19	1901	1.0816
2	15	.15	136/	4864
3 4	21	.09	. 33	10336
5	1)	.10	1.38	-176,4
6	B 2	.02	- 148	.576
	5=100		114	1.9a48 1.3872
			Z= 2.60	
4=2	ما .			T= 3.72
ر ع ع	3.72			

の==3.72 の=1.9

Pg 203 #29-31 (1) You'll need to find P(x) first.

$$\star Each P(x) = f$$
Constructing Probability Distributions In Exercises 29-34, (a) use the XIP(x)

Constructing Probability Distributions In Exercises 29–34, (a) use the frequency distribution to construct a probability distribution, find the (b) mean, (c) variance, and (d) standard deviation of the probability distribution, and (e) interpret the results in the context of the real-life situation.

29. Dogs The number of dogs per household in a small town $\mu < 0.495 = .5$

Dogs	0	1	2	3	4	5	M < 0.
Households	1491	425	168	48	29	14	$\Sigma f = 2175$

30. Cats The number of cats per household in a small town

			22.96 (2.00.2004)				M-3	
Cats		1					- 5	
Households	1941	349	203	78	57	40	$\Sigma f = 2668$	

31. Computers The number of computers per household in a small town

APRIL DE LA CONTRACTOR DE					F	//
Computers	0	1	2	3		$M = \cdot / \cdot$
Households	300	280	95	20	$\Sigma f = 695$	= 8

