Chapter 19 Review: Acids and Bases

1. Label each property as that of an Acid, Base, or Both:

a. H+ donor Acid

b. H+ acceptor Base

c. Produces H+ ions Acid

d. Produces OH-ions Base

e. pH is more than 7 Base

2. In the reactions below, label each substance as an acid, base, conjugate acid, or conjugate base. Draw arrows to show the movement of the H+ ion.

a. HC2H3O2 + H2O
⇒ C2H3O2 + H3O+

Acid Base conjugate conjugate

berse acid

b. NH₃ + H₂O

Base acid conjugate conjugate base acid

3. What does it mean of a substance is amphoteric? Give an example of an amphoteric substance.

Amphoteric substancis can act as acids or bases. Water is an example.

4. $[H_3O^+] = 3.50 \times 10^{-4} \text{ M} = \text{TH}^{+}$

a. Calculate the pH value

 $\rho H = -109(3.5 \times 10^{-4}) = 3.46$

b. Is this solution an acid or base?

(Because phis less than 7)

5.
$$pH = 12.8$$

a. Calculate the [H+]
$$(H+7=10^{PH}=10^{-12.8}=[1.58\times10^{-13}M]$$

6.
$$[OH^{-}] = 1.8 \times 10^{-9} M$$

a. Calculate the pH
$$pOH = -log(O+r) = -log(1.8 \times 10^{-9}) = 8.74$$

$$pH = 14 - pOH = 14 - 8.74 = 5.26$$

7. Predict the products of these neutralization reactions. Then balance.

8. If 25.0 mL of 0.500 M KOH are needed to neutralize 10.0 mL of HCl, what is the concentration of HCl?

concentration of HCI?

$$V_B = 25 - 0 \text{ mL}$$
 $M_A V_A = M_B V_B$
 $M_A = \frac{M_B V_B}{V_A} = \frac{(.500)(25-0)}{(10-0)}$
 $M_B = 0.500M$
 $M_A = 10.0 \text{ mL}$
 $M_A = ?$

 To determine the concentration of an HCl solution, 15.0 mL of this solution are titrated with a 1.00 M solution of KOH. Before titrating, a buret is filled with 1.00 M KOH to 3.35 mL. After reaching the equivalence point, the buret reading is 34.00 mL. Calculate the molarity of HCl.

$$M_{A} = ?$$
 $V_{A} = 15.0 \text{ mL}$
 $M_{B} = 1.00 \text{ mL}$
 $M_{B} = 34.00 - 3.35 = 30.65 \text{ mL}$
 $M_{A} = \frac{M_{B}V_{B}}{V_{A}} = \frac{(1.00)(30.65)}{(15.0)}$
 $M_{A} = \frac{(1.00)(30.65)}{V_{A}}$
 $M_{A} = \frac{(1.00)(30.65)}{(15.0)}$

Honors Chemistry

- To determine the concentration of an HCl solution, 15.0 mL of this solution are titrated with a 1.00 M solution of KOH. Before titrating, a buret is filled with 1.00 M KOH to 3.35 mL. After reaching the equivalence point, the buret reading is 34.00 mL. Calculate the molarity of HCl.
- 9. Draw particle-level sketches of the following. Be sure to include a key.

a. 0.05 M Ca(OH)₂ (A dilute strong base)

b. 8.0 M HC₂H₃O₂ (a concentrated weak acid)

10. Write the ionization equations for both of the solutions you drew in question 9 a. $(a(0+)_2 \leftrightarrow (a^2++20+)$

b. H(2H302 => H+ + C2H302-

11. What determines the strength of an acid or base?

extent not ionization. All ionized = strong some ionized = weak