Final Exam Study Guide

UNIT 1: SYSTEM OF EQUATIONS

1. NC Solve the following system of equations:

$$y = -\frac{5}{3}x + 3$$
$$y = \frac{1}{3}x - 3$$

a. What method (elimination, substitution, or graphing) would be best to solve this system? Why?

b. Solve the system by graphing.

c. Check your solution.

$$(3,-2)$$
 is soln.

2. NC Solve the following system of equations:

$$y = 6x - 11$$
$$-2x - 3y = -7$$

a. Which method would be the best to use for this system? Why?

$$y=6(2)-11$$

= 12-11
 $y=1$

3. NC Solve the following system of equations:

$$5x + y = 9$$
$$10x - 7y = -18$$

- Which method would be the best to use for this system? Why? elimination
- Solve by elimination.

$$10x - 7y = -18 \Rightarrow 10x - 7y = -18$$

$$-2(5x + y = q) \Rightarrow -10x + -2y = -18$$

$$-9y = -36$$

$$\boxed{y = +4}$$

$$5x + (+4) = 9$$

 $-4 - 4$
 $5x = 5$
 $x = 1$

4. **NC** Graph the following system of inequalities. Then, circle the points below that are solutions to the system.

y = 3x - 4 $y = \frac{1}{2}x + 3$ $\sin d$

breadstick cost? 5x+4y=51 5x+4y=51 27+2y=16 x=pizza y=breadsticks (x+2y=15) (x+2y=15)

- 7. Leila has \$2 in her purse as coins. She has a total of 16 nickels and quarters. How many coins does she have of each type? Write a system of equations and solve algebraically.

8. For each system below, solve by **two methods**: algebraically and by graphing. Sketch a rough picture of the graph, labeling the solutions clearly.

$$4x-8 = x - 8x + 12$$

$$-4x$$

$$-8 = x^{2} - 12x + 12$$

$$+8$$

$$0 = x^{2} - 12x + 20$$

$$0 = (x - 10)(x - 2)$$

$$x = 10, 2$$

$$y = 4(10) - 8$$

$$y = 4(2) - 8$$

$$y = 40 - 8$$

$$y = 8 - 8$$

$$y = 32$$

$$y = 0$$

$$(10, 32)$$

* where the quadratic à linear equ. intersect are the answers men graphing

UNIT 2: FUNCTION FAMILIES

1. Given the family name, find the parent equation and graph it. Determine the domain, range, and end behavior.

Family: Quadratic

Equation: $\sqrt{-\chi^2}$

Domain: $(-\infty, +\infty)$

Range: $[0, +\infty)$

Positive: (0, + 20)

Negative: $(-\infty, 0)$

Increasing: $(0, +\infty)$

Decreasing: $(-\infty, \circ)$

Family: Absolute Value Equation: f(x) = |x|

Domain: $(-\infty, +\infty)$

Range: $[0, +\infty)$

Positive: Negative:

Increasing: (0, +\infty) Decreasing: $(-\infty, 0)$ Family: Radical Square Evot

Equation: $f(x) = \sqrt{x}$

Domain: $(6, +\infty)$

Range: $[c_1 + \infty]$

Positive: Negative:

Increasing $(0, +\infty)$

Decreasing: N/A

Family: Exponential Growth

Equation: $f(x) = e^{x}$

Domain: $(-\infty, +\infty)$ Range: $(0, +\infty)$

Positive: Negative:

Increasing: $(-\infty, +\infty)$

Decreasing: N/A

2. For the function f(x) = a(x - h) + k, complete the table for the transformation of each variable and describe them.

a > 1	$h \geq 0$	$k \leq 0$
Vertical	·his pos. in()	· K is neg
	comes out neg:	trans. down
(cloterto y-axis)	me trans. left	
0 < a < 1	$h \leq 0$	$k \geq 0$
Weunden	· his nearn ()	· K is pos.
compression	· h is negin () comes ou+(+)	
(cloter to x-axis)	·trans right	· trans VP.
(a is negative) reflection	Times J.	
reflection		

3. Graph the following functions. Find their domain and range.

$$f(x) = (x+2)^2 - 4$$

-30 -25 -20 -15 -10 -5

4. For each graph below, determine whether it is a function. Then determine its domain and range in interval notation. Identify ONE solution to the function (point on the graph) and ONE x-intercept.

Function? YES/NO

Domain: (-0, 15] Range: (-00, +00)

Solution Pt: (15,5) x-intercept: (120)

Parent NW

Function: anadmic

 $f(x)=\chi^2$

Function?/YES/NO

Function:

Sq. Root

 $f(x) = \sqrt{x}$

Function? YES/NO

Domain: -1,5

Range: [-3,3] Solution Pt: (T,T)

x- intercept: (-1,0)(5,0)

Parent Fungtion:

Function? YES(NO)

Domain: $[1, +\infty)$

Range: $(-\infty_1 + \infty)$

Solution Pt: (21)

x- intercept: (1,0)

Parent Function:

Abs. Value

f(x)= | x |

5. For each graph, draw one line connecting it to its matching **domain** and then fill in the blanks for the **end behavior** to the right of the graph.

DOMAIN		INTERVALS
$(-\infty,\infty)$	2 -1 2 3 4 5 6 7 8 9 10 11 x	End Behavior: $x \to -\infty, y \to +\infty$ $x \to \infty, y \to +\infty$
[1,∞)	8	End Behavior: $x \to -\infty, y \to \cancel{x}$ $x \to \infty, y \to \cancel{+\infty}$

Exp. Decay & Growth have asymptotes. they have special end behaviors.

* TUST LOUK AT X-AXIS!
6. Identify the intervals of which the function is increasing, decreasing or constants.

UNIT 3: QUADRATICS

UNIT 3: Quadratics

1. Simplify the following radicals.

a.
$$\sqrt{24} < \sqrt{\frac{4}{16}} = 2\sqrt{6}$$

b.
$$\sqrt{75} = 5\sqrt{3}$$

c.
$$\sqrt{-100} = 10i$$

d.
$$\sqrt{45} = 3\sqrt{5}$$

2. Find the **y-intercepts** of the following quadratic functions.

a.
$$f(x) = x^2 + 74x - 45$$
 (0)-45)

b.
$$f(x) = x^2 + 4x + 23$$
 (0.23)

b.
$$f(x) = x^2 + 4x + 23$$
 (0.23)
c. $f(x) = 2x^2 - 3x - 4$ (0.-4)

3. NC The graph to the right can be represented by which of the following equations:

b.
$$y = (x-1)(x+2)$$

c. $y = (x+1)(x+2)$

$$c. y = (x+1)(x+2)$$

d.
$$y = (x-1)(x-2)$$

4. Factor the following functions:

a.
$$f(x) = x^2 + 2x - 3$$
 $(\chi - 1)(\chi + 3)$

b.
$$f(x) = x^2 + 8x + 15 (x+5)(x+3)$$

c.
$$f(x) = x^2 - x - 20 (\chi - 5)(\chi + 4)$$

d.
$$f(x) = x^2 + 4x + 23$$
 NOT FACTORABLE

5. Don't forget that you will have to use the quadratic formula on the final. Please state the quadratic formula and use it to solve for x in the following equations.

$$3x^{2} - 3x - 4 = 0$$

$$\chi = \pm 3 \pm \sqrt{(-3)^{2} - 4(3)(-4)}$$

$$= 3 \pm \sqrt{9 + 48}$$

$$= 3 \pm \sqrt{57}$$

$$= 6$$

$$3x^{2} - 3x - 4 = 0$$

$$x = +3 \pm \sqrt{(-3)^{2} - 4(3)(-4)}$$

$$= 3 \pm \sqrt{9 + 40}$$

$$= \frac{3 \pm \sqrt{57}}{6}$$

$$= -6 \pm \sqrt{-300} < \sqrt{\frac{36}{10}}$$

$$= -6 \pm \sqrt{\frac{22}{10}} = -\frac{3 \pm 3i\sqrt{10}}{11}$$
6. How many times does each of the following functions intersect the x-axis?

a.
$$y = 3x^2 + \frac{2}{3}x - \frac{1}{3}$$
 crosses 2 times

b.
$$f(x) = \frac{4}{3}x^2 - 4x + 3$$
 crosses 1 time

graph the following and see where they intersect the x-axis, & how many times-if any.

c.
$$y = 2x^2 - \frac{1}{2}x + \frac{3}{2}$$

Crosses o times

7. Simplify each expression. Write your answer in a + bi format.

a.
$$(6-2i)-(11+4i) \Rightarrow -5-6i$$

b.
$$(-2-i)(4+i) \Rightarrow q-(e)$$

c.
$$(6-5i)(3+2i) = 728-31$$

8. Using the graph at the right, It shows the height h in feet of a small rocket t seconds after it is launched. The path of the rocket is given by the equation: $h(x) = -16x^2 + 128t$.

- What is the greatest height the rocket reaches? 260 ff
- c. About how high is the rocket after 1 second? 100 ff
- d. After 2 seconds, about how high is the rocket? 190 ff
- e. After 6 seconds, about how high is the rocket? 190 44
- 9. A quarterback throws a football up into the air with an initial height of 6 feet. The height, h, of the ball at t seconds can be represented by the equation $h(t) = -16t^2 + 20t + 6$.

a. How many seconds will it take to reach the maximum height of the football?

$$\chi = \frac{-b}{2a} = \frac{-20}{2(-16)} = \frac{-20}{-32} = \frac{5}{8}$$

b. What is the maximum height of the football?

$$h(t) = -16(5/8)^2 + 20(5/8) + 6$$

 $h(t) = 12.25 f+$

- 10. A squirrel is 24 feet up in a tree and tosses a nut out of the tree. The nuts height, h, at time t seconds can be represented by the equation $h(t) = -16t^2 + 8t + 24$.
 - a. How many seconds will it take for the nut to reach maximum height?

$$\chi = \frac{-b}{2a} = \frac{-8}{2(-16)} = \frac{-8}{-32} = 0.25 \text{ S}$$

b. What is the maximum height of the nut?

$$h(t) = -16(0.25)^{2} + 8(0.25) + 24$$

$$h(t) = 25 + 4$$

11. Solve the following for x.

a.
$$\sqrt{3x-5}-5=2 \Rightarrow 18$$

b.
$$(x-4)^2 = 9 = 7 \chi = 7$$

c.
$$4x^2 + 72 = 0 = 7$$
 $1 = 13$

$$\sqrt{3x-5-5} = 2$$

$$(\sqrt{3x-5}) = (7)^{2}$$

$$3x-5=49$$

$$3x=54$$

$$x=18$$

b. What is the maximum height of the nut?

$$h(+) = -16(0.25)^{2} + 8(6.25) + 24$$

$$h(+) = 25 + 4$$
11. Solve the following for x.
a. $\sqrt{3x-5}-5=2$ $(\sqrt{3x-5})^{2}=(7)^{2}$ $(\sqrt{x-4})^{2}=(7)^{2}$ $(\sqrt{x-4})^{2}=(7)^{2}=(7)^{2}$ $(\sqrt{x-4})^{2}=(7)^{$

Quadratics SKIP 11 d.

UNIT 4: RATIONALS

d.
$$\frac{1}{x^2+4x-21}$$

b. $\frac{x+4}{x^2+9x+20} = \frac{x+4}{(x+4)(x+5)} = \frac{1}{x+5}$
 $\frac{x}{5}$ $\frac{x}{4}$ $\frac{x}{4}$ $\frac{x}{4}$ $\frac{x}{2}$ $\frac{x}{4}$ $\frac{x}{2}$

$$= \frac{(x-8)(x-10)}{(x+3)(x+7)} \quad [x \neq 3,-7]$$

$$= \frac{(x-10)}{(x+7)}$$

2. Solve the following rational expressions (find x).

$$\Rightarrow 7(2x-3) = 15x$$

 $14x-21 = 15x$
 $-14x$
 $-21 = x$

$$\chi^{2} + \chi - 30 = 0$$

$$(x+6)(x-5)=0$$

$$(x-6)(x-5)=0$$