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What you’ll learn about
• Two Major Theorems
• Complex Conjugate Zeros
• Factoring with Real Number

Coefficients

... and why
These topics provide the com-
plete story about the zeros and
factors of polynomials with real
number coefficients.

Two Major Theorems
In Section 2.3 we learned that a polynomial function of degree n has at most n real
zeros. Figure 2.42 shows that the polynomial function of
degree 2 has no real zeros. (Why?) A little arithmetic, however, shows that the com-
plex number is a zero of ƒ:

The quadratic formula shows that are the two zeros of ƒ and can be used to
find the complex zeros for any polynomial function of degree 2. In this section we will
learn about complex zeros of polynomial functions of higher degree and how to use
these zeros to factor polynomial expressions.

-1 � 2i

= 0

= 0 + 0i

= 1-3 -  4i2 + 1-2 + 4i2 + 5

ƒ1-1 + 2i2 = 1-1 + 2i22 + 21-1 + 2i2 + 5

-1 + 2i

ƒ1x2 = x2
+ 2x + 5

2.5 Complex Zeros and the 
Fundamental Theorem 
of Algebra

[–9.4, 9.4] by [–2, 10]

FIGURE 2.42 The graph of 
has no x-intercepts, so ƒ has no real 

zeros.
2x + 5

ƒ(x) = x2
+

THEOREM Fundamental Theorem of Algebra

A polynomial function of degree n has n complex zeros (real and nonreal).
Some of these zeros may be repeated.

THEOREM Linear Factorization Theorem

If is a polynomial function of degree then has precisely n linear
factors and

where a is the leading coefficient of and are the complex zeros
of . The are not necessarily distinct numbers; some may be repeated.z iƒ1x2 z1, z2, Á , znƒ1x2

ƒ1x2 = a1x - z121x - z22Á 1x - zn2
ƒ1x2n 7 0,ƒ1x2

The Factor Theorem extends to the complex zeros of a polynomial function. Thus, k is
a complex zero of a polynomial if and only if is a factor of the polynomial, even
if k is not a real number. We combine this fact with the Fundamental Theorem of
Algebra to obtain the following theorem.

x - k

The Fundamental Theorem of Algebra and the Linear Factorization Theorem are
existence theorems. They tell us of the existence of zeros and linear factors, but not how
to find them.

One connection is lost going from real zeros to complex zeros. If k is a nonreal com-
plex zero of a polynomial function , then k is not an x-intercept of the graph of ƒ.
The other connections hold whether k is real or nonreal:

ƒ1x2
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Fundamental Polynomial Connections in the Complex Case

The following statements about a polynomial function ƒ are equivalent if k is a
complex number:

1. is a solution (or root) of the equation 

2. k is a zero of the function ƒ.

3. is a factor of .ƒ1x2x - k

ƒ1x2 = 0.x = k

EXAMPLE 1  Exploring Fundamental Polynomial Connections
Write the polynomial function in standard form, and identify the zeros of the function
and the x-intercepts of its graph.

(a)

(b)

(c)

SOLUTION

(a) The quadratic function has two zeros:
and Because the zeros are not real, the graph of ƒ has no 

x-intercepts.

(b) The cubic function

has three zeros: Of the three, only is an
x-intercept.

(c) The quartic function

has four zeros: , , , and There are only three distinct
zeros. The real zero is a repeated zero of multiplicity two. Due to this
even multiplicity, the graph of ƒ touches but does not cross the x-axis at ,
the only x-intercept.

Figure 2.43 supports our conclusions regarding x-intercepts.
Now try Exercise 1.

x = 3
x = 3

x = - i.x = ix = 3x = 3

= x4
- 6x3

+ 10x2
- 6x + 9

= 1x2
- 6x + 921x2

+ 12
 ƒ1x2 = 1x - 321x - 321x - i21x + i2

x = 5x = 5, x = 12i, and x = - 12i.

= x3
- 5x2

+ 2x - 10

= 1x - 521x2
+ 22

ƒ1x2 = 1x - 521x - 12i21x + 12i2

x = -2i.x = 2i
ƒ1x2 = 1x - 2i21x + 2i2 = x2

+ 4

ƒ1x2 = 1x - 321x - 321x - i21x + i2
ƒ1x2 = 1x - 521x - 12i21x + 12i2
ƒ1x2 = 1x - 2i21x + 2i2

[–4, 6] by [–25, 25]

(b)

[–4, 6] by [–10, 30]

(c)

[–5, 5] by [–15, 15]

(a)

FIGURE 2.43 The graphs of (a) 
, (b) ,

and (c) 
(Example 1)

y = x4
- 6x3

+ 10x2
- 6x + 9.

y = x3
- 5x2

+ 2x - 10y = x2
+ 4

Complex Conjugate Zeros
In Section P.6 we saw that, for quadratic equations with real coeffi-
cients, if the discriminant is negative, the solutions are a conjugate pair of com-
plex numbers. This relationship generalizes to polynomial functions of higher degree in
the following way:

b2
- 4ac

ax2
+ bx + c = 0

THEOREM Complex Conjugate Zeros

Suppose that is a polynomial function with real coefficients. If a and b are
real numbers with and is a zero of , then its complex conju-
gate is also a zero of .ƒ1x2a - bi

ƒ1x2a + bib Z 0
ƒ1x2
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212 CHAPTER 2 Polynomial, Power, and Rational Functions

EXPLORATION 1 What Can Happen if the Coefficients Are Not Real?
1. Use substitution to verify that and are zeros of 

Are the conjugates of 2i and also zeros of ?

2. Use substitution to verify that and are zeros of 
Are the conjugates of i and also zeros of ?

3. What conclusions can you draw from parts 1 and 2? Do your results contradict
the theorem about complex conjugate zeros?

g1x21 - ix + 11 + i2. g1x2 = x2
-x = 1 - ix = i

ƒ1x2- iix + 2.
ƒ1x2 = x2

-x = - ix = 2i

EXAMPLE 2  Finding a Polynomial from Given Zeros
Write a polynomial function of minimum degree in standard form with real coeffi-
cients whose zeros include and 

SOLUTION Because and 4 are real zeros, and must be factors.
Because the coefficients are real and is a zero, must also be a zero.
Therefore, and must both be factors of . Thus,

is a polynomial of the type we seek. Any nonzero real number multiple of will
also be such a polynomial. Now try Exercise 7.

ƒ1x2
= x4

- 5x3
- 3x2

+ 43x - 60

= 1x2
- x - 1221x2

- 4x + 52
ƒ1x2 = 1x + 321x - 423x - 12 - i243x - 12 + i24

ƒ1x2x - 12 + i2x - 12 - i2 2 + i2 - i
x - 4x + 3-3

2 - i.-3, 4,

EXAMPLE 3  Finding a Polynomial from Given Zeros
Write a polynomial function of minimum degree in standard form with real coeffi-
cients whose zeros include 

SOLUTION Because the coefficients are real and is a zero, must
also be a zero. Therefore, are both factors of .
Likewise, because is a zero, must be a zero. It follows that 
and are both factors of . Therefore,

is a polynomial of the type we seek. Any nonzero real number multiple of will
also be such a polynomial. Now try Exercise 13.

ƒ1x2
= x5

- 5x4
+ 15x3

- 25x2
+ 24x - 10

= 1x3
- 3x2

+ 7x - 521x2
- 2x + 22

= 1x - 121x2
- 2x + 521x2

- 2x + 22
ƒ1x2 = 1x - 123x - 11 + 2i243x - 11 - 2i243x - 11 + i243x - 11 - i24

ƒ1x2x - 11 + i2 x - 11 - i21 + i1 - i
ƒ1x2x - 11 + 2i2 and x - 11 - 2i2 1 - 2i1 + 2i

x = 1, x = 1 + 2i, x = 1 - i.

EXAMPLE 4  Factoring a Polynomial with Complex Zeros
Find all zeros of , and write in its
linear factorization.

SOLUTION Figure 2.44 suggests that the real zeros of ƒ are , and
x = 4.

x = -2, x = 1

ƒ1x2ƒ1x2 = x5
- 3x4

- 5x3
+ 5x2

- 6x + 8
[–4.7, 4.7] by [–125, 125]

FIGURE 2.44
has three real zeros.

(Example 4)
5x2

- 6x + 8
ƒ1x2 = x5

- 3x4
- 5x3 

+
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Synthetic division can be used with complex number divisors in the same way it is used
with real number divisors.

Using synthetic division we can verify these zeros and show that is a factor
of ƒ. So are also zeros. Therefore,

Now try Exercise 29.
= 1x + 221x - 121x - 421x - i21x + i).

= 1x + 221x - 121x - 421x2
+ 12

ƒ1x2 = x5
- 3x4

- 5x3
+ 5x2

- 6x + 8

x = i and x = - i
x2

+ 1

EXAMPLE 5  Finding Complex Zeros
The complex number is a zero of 
Find the remaining zeros of , and write it in its linear factorization.

SOLUTION We use synthetic division to show that :

4 0 17 14 65

Thus is a zero of . The conjugate must also be a zero. We use
synthetic division on the quotient found above to find the remaining quadratic factor:

4 8 13 0

Finally, we use the quadratic formula to find the two zeros of :

Thus the four zeros of are , and 
Because the leading coefficient of is 4, we obtain

If we wish to remove fractions in the factors, we can distribute the 4 to get

Now try Exercise 33.

Factoring with Real Number Coefficients
Let be a polynomial function with real coefficients. The Linear Factorization 
Theorem tells us that can be factored into the form

ƒ1x2 = a1x - z121x - z22Á 1x - zn2,
ƒ1x2ƒ1x2

ƒ1x2 = 3x - 11 - 2i243x - 11 + 2i2432x - 1-2 + 3i2432x - 1-2 - 3i24.

ƒ1x2 = 43x - 11 - 2i243x - 11 + 2i24 Cx - A -1 +
3
2 i B D Cx - A -1 -

3
2 i B D .

ƒ1x2 -1 - 13/22i.1 - 2i, 1 + 2i, -1 + 13/22iƒ1x2
= -1�

3

2
 i

=

-8 � 12i

8

=

-8 � 1-144

8

x =

-8 � 164 - 208

8

4x2
+ 8x + 13

4 + 8i   8 + 16i   13 + 26i

4   4 - 8i   5 - 16i   -13 - 26i1 + 2i

1 + 2iƒ1x21 - 2i

4  4 - 8i  5 - 16i  -13 - 26i  0

4 - 8i  -12 - 16i  -27 - 26i  -65

1 - 2i

ƒ11 - 2i2 = 0

ƒ1x2 ƒ1x2 = 4x4
+ 17x2

+ 14x + 65.z = 1 - 2i

SECTION 2.5 Complex Zeros and the Fundamental Theorem of Algebra 213
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where are complex numbers. Recall, however, that nonreal complex zeros occur in
conjugate pairs. The product of and is

So the quadratic expression , whose coefficients are real num-
bers, is a factor of . Such a quadratic expression with real coefficients but no real
zeros is irreducible over the reals. In other words, if we require that the factors of a
polynomial have real coefficients, the factorization can be accomplished with linear
factors and irreducible quadratic factors.

ƒ1x2 x2
- 2ax + 1a2

+ b22
= x2

- 2ax + 1a2
+ b22.

3x - 1a + bi243x - 1a - bi24 = x2
- 1a - bi2x - 1a + bi2x + 1a + bi21a - bi2

x - 1a - bi2x - 1a + bi2z i

214 CHAPTER 2 Polynomial, Power, and Rational Functions

Factors of a Polynomial with Real Coefficients

Every polynomial function with real coefficients can be written as a product of
linear factors and irreducible quadratic factors, each with real coefficients.

EXAMPLE 6  Factoring a Polynomial
Write as a product of linear and irre-
ducible quadratic factors, each with real coefficients.

SOLUTION The Rational Zeros Theorem provides the candidates for the rational
zeros of ƒ. The graph of ƒ in Figure 2.45 suggests which candidates to try first. Using
synthetic division, we find that is a zero. Thus,

Because the zeros of are complex, any further factorization would introduce
nonreal complex coefficients. We have taken the factorization of ƒ as far as possible,
subject to the condition that each factor has real coefficients.

Now try Exercise 37.

x2
+ 4

= 13x - 221x - 1221x + 1221x2
+ 42

= 13x - 221x2
- 221x2

+ 42
= ax -

2

3
b1321x4

+ 2x2
- 82

ƒ1x2 = ax -

2

3
b13x4

+ 6x2
- 242

x = 2/3

ƒ1x2 = 3x5
- 2x4

+ 6x3
- 4x2

- 24x + 16

[–3, 3] by [–20, 50]

FIGURE 2.45
has three real zeros.

(Example 6)
4x2

- 24x + 16
ƒ1x2 = 3x5

- 2x4
+ 6x3 

-

We have seen that if a polynomial function has real coefficients, then its nonreal com-
plex zeros occur in conjugate pairs. Because a polynomial of odd degree has an odd
number of zeros, it must have at least one zero that is real. This confirms Example 7 of
Section 2.3 in light of complex numbers.

The function in Example 6 fits the con-
ditions of this theorem, so we know immediately that we are on the right track in
searching for at least one real zero.

ƒ1x2 = 3x5
- 2x4

+ 6x3
- 4x2

- 24x + 16

Polynomial Function of Odd Degree

Every polynomial function of odd degree with real coefficients has at least one
real zero.
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SECTION 2.5 Complex Zeros and the Fundamental Theorem of Algebra 215

QUICK REVIEW 2.5 (For help, go to Sections P.5, P.6, and 2.4.)

In Exercises 5 and 6, factor the quadratic expression.Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, perform the indicated operation, and write the 
result in the form 

1.

2.

3. 4.
2 + 3i

1 - 5i
11 + 2i213 - 2i2
15 - 7i2 - 13 - 2i2
13 - 2i2 + 1-2 + 5i2

a + bi.

5. 6. 6x2
- 13x - 52x2

- x - 3

In Exercises 7 and 8, solve the quadratic equation.

7. 8.

In Exercises 9 and 10, list all potential rational zeros.

9.

10. 4x5
- 7x2

+ x3
+ 13x - 3

3x4
- 5x3

+ 3x2
- 7x + 2

2x2
+ 3x + 7 = 0x2

- 5x + 11 = 0

SECTION 2.5 EXERCISES

In Exercises 1–4, write the polynomial in standard form, and identify
the zeros of the function and the x-intercepts of its graph.

1.

2.

3.

4.

In Exercises 5–12, write a polynomial function of minimum degree in
standard form with real coefficients whose zeros include those listed.

5. i and 6. and 

7. 1, 3i, and 8. and 

9. 2, 3, and i 10. and 

11. 5 and 12. and 

In Exercises 13–16, write a polynomial function of minimum degree in
standard form with real coefficients whose zeros and their multiplicities
include those listed.

13. 1 (multiplicity 2), (multiplicity 3)

14. (multiplicity 3), 3 (multiplicity 1)

15. 2 (multiplicity 2), (multiplicity 1)

16. (multiplicity 2), (multiplicity 1)

In Exercises 17–20, match the polynomial function graph to the given
zeros and multiplicities.

-2 - i-1

3 + i

-1

-2

1 + 2i-23 + 2i

1 - i-1, 2,

1 + i-4, 1 - i,-3i

1 + 2i1 - 2i- i

ƒ1x2 = x(x - 121x - 1 - i21x - 1 + i2
ƒ1x2 = 1x - 121x - 121x + 2i21x - 2i2
ƒ1x2 = 1x + 221x - 13i21x + 13i2
ƒ1x2 = 1x - 3i21x + 3i2

17. (multiplicity 2), 2 (multiplicity 3)

18. (multiplicity 3), 2 (multiplicity 2)

19. (multiplicity 4), 3 (multiplicity 3)

20. (multiplicity 3), 3 (multiplicity 4)

In Exercises 21–26, state how many complex and real zeros the 
function has.

21.

22.

23.

24.

25.

26.

In Exercises 27–32, find all of the zeros and write a linear factorization
of the function.

27.

28.

29.

30.

31.

32.

In Exercises 33–36, using the given zero, find all of the zeros and write
a linear factorization of .

33. is a zero of .

34. 4i is a zero of 

35. is a zero of 

36. is a zero of 

In Exercises 37–42, write the function as a product of linear and 
irreducible quadratic factors all with real coefficients.

37.

38.

39.

40. ƒ1x2 = 3x3
- 2x2

+ x - 2

ƒ1x2 = 2x3
- x2

+ 2x - 3

ƒ1x2 = x3
- x2

+ x - 6

ƒ1x2 = x3
- x2

- x - 2

ƒ1x2 = x4
- 2x3

+ 5x2
+ 10x - 50.1 + 3i

ƒ1x2 = x4
- 6x3

+ 11x2
+ 12x - 26.3 - 2i

ƒ1x2 = x4
+ 13x2

- 48.

ƒ1x2 = x4
- 2x3

- x2
+ 6x - 61 + i

ƒ1x2
ƒ1x2 = 20x4

- 148x3
+ 269x2

- 106x - 195

ƒ1x2 = 6x4
- 7x3

- x2
+ 67x - 105

ƒ1x2 = 3x4
+ 8x3

+ 6x2
+ 3x - 2

ƒ1x2 = x4
+ x3

+ 5x2
- x - 6

ƒ1x2 = x3
- 10x2

+ 44x - 69

ƒ1x2 = x3
+ 4x - 5

ƒ1x2 = x5
- 2x2

- 3x + 6

ƒ1x2 = x4
- 5x3

+ x2
- 3x + 6

ƒ1x2 = x4
- 2x2

+ 3x - 4

ƒ1x2 = x3
- x + 3

ƒ1x2 = x3
- 3x2

+ x + 1

ƒ1x2 = x2
- 2x + 7

-1

-1

-3

-3

[–5, 5] by [–150, 150]

(a)

[–5, 5] by [–150, 150]

(b)

[–5, 5] by [–150, 150]

(c)

[–5, 5] by [–150, 150]

(d)
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41.

42.

In Exercises 43 and 44, use Archimedes’ Principle, which states that
when a sphere of radius r with density is placed in a liquid of density

, it will sink to a depth h where

Find an approximate value for h if:

43. and 

44. and 

In Exercises 45–48, answer yes or no. If yes, include an example. If no,
give a reason.

45. Writing to Learn Is it possible to find a polynomial of
degree 3 with real number coefficients that has as its only
real zero?

46. Writing to Learn Is it possible to find a polynomial of
degree 3 with real coefficients that has 2i as its only nonreal
zero?

47. Writing to Learn Is it possible to find a polynomial
of degree 4 with real coefficients that has zeros

, and 

48. Writing to Learn Is it possible to find a polynomial
of degree 4 with real coefficients that has zeros 

and 

In Exercises 49 and 50, find the unique polynomial with real coeffi-
cients that meets these conditions.

49. Degree 4; zeros at , and 

50. Degree 4; zeros at and 

51. Sally’s distance D from a motion detector is given by the data
in Table 2.16.

(a) Find a cubic regression model, and graph it together with a
scatter plot of the data.

(b) Describe Sally’s motion.

(c) Use the cubic regression model to estimate when Sally
changes direction. How far is she from the motion detector
when she changes direction?

x = 1 + i; ƒ102 = 20x = 1 - 2i

x = 2 - i; ƒ102 = 30x = 3, x = -1

1 - i?
1 + 3iƒ1x2

1 - i?-3, 1 + 2i
ƒ1x2

-2

dS = 45 lb/ft3.r = 5 ft

dS = 20 lb/ft3.r = 5 ft

p

3
 13rh2

- h32dL =

4

3
 pr 3dS.

dL = 62.5 lb/ft3
dS

ƒ1x2 = x4
- 2x3

+ x2
- 8x - 12

ƒ1x2 = x4
+ 3x3

- 3x2
+ 3x - 4 52. Jacob’s distance D from a motion detector is given by the data

in Table 2.17.

(a) Find a quadratic regression model, and graph it together
with a scatter plot of the data.

(b) Describe Jacob’s motion.

(c) Use the quadratic regression model to estimate when Jacob
changes direction. How far is he from the motion detector
when he changes direction?

216 CHAPTER 2 Polynomial, Power, and Rational Functions

Table 2.16 Motion Detector Data

t (sec) D (m) t (sec) D (m)

0.0 3.36 4.5 3.59
0.5 2.61 5.0 4.15
1.0 1.86 5.5 3.99
1.5 1.27 6.0 3.37
2.0 0.91 6.5 2.58
2.5 1.14 7.0 1.93
3.0 1.69 7.5 1.25
3.5 2.37 8.0 0.67
4.0 3.01

Table 2.17 Motion Detector Data

t (sec) D (m) t (sec) D (m)

0.0 4.59 4.5 1.70
0.5 3.92 5.0 2.25
1.0 3.14 5.5 2.84
1.5 2.41 6.0 3.39
2.0 1.73 6.5 4.02
2.5 1.21 7.0 4.54
3.0 0.90 7.5 5.04
3.5 0.99 8.0 5.59
4.0 1.31

Standardized Test Questions
53. True or False There is at least one polynomial with real

coefficients with as its only nonreal zero. Justify your 
answer.

54. True or False A polynomial of degree 3 with real coeffi-
cients must have two nonreal zeros. Justify your answer.

In Exercises 55–58, you may use a graphing calculator to solve the
problem.

55. Multiple Choice Let z be a nonreal complex number
and its complex conjugate. Which of the following is not a
real number?

(A) (B) (C) (D) (E) 

56. Multiple Choice Which of the following cannot be the
number of real zeros of a polynomial of degree 5 with real co-
efficients?

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

57. Multiple Choice Which of the following cannot be the
number of nonreal zeros of a polynomial of degree 5 with real
coefficients?

(A) 0 (B) 2 (C) 3 (D) 4

(E) None of the above

58. Multiple Choice Assume that is a zero of the
polynomial ƒ with real coefficients. Which of the following
statements is not true?

(A) is a factor of .

(B) is a factor of .

(C) is a factor of .

(D) is a zero of ƒ.

(E) The number of nonreal complex zeros of ƒ could be 1.

1 - 2i

ƒ1x2x - 11 - 2i2
ƒ1x2x2

- 2x + 5

ƒ1x2x - 11 + 2i2

1 + 2i

z21z z 221z + z 22z zz + z

z

1 - 2i
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Explorations
59. Group Activity The Powers of 1 i

(a) Selected powers of are displayed in Table 2.18. Find
a pattern in the data, and use it to extend the table to power
7, 8, 9, and 10.

(b) Compute , , , and 
using the fact that 

(c) Compare your results from parts (a) and (b) and reconcile,
if needed.

11 + i26 = -8i.
11 + i21011 + i2911 + i2811 + i27

1 + i

�

60. Group Activity The Square Roots of i
Let a and b be real numbers such that 

(a) Expand the left-hand side of the given equation.

(b) Think of the right-hand side of the equation as , and
separate the real and imaginary parts of the equation to ob-
tain two equations.

(c) Solve for a and b.

(d) Check your answer by substituting them in the original
equation.

(e) What are the two square roots of i?

61. Verify that the complex number i is a zero of the polynomial

62. Verify that the complex number i is a zero of the polyno-
mial 

Extending the Ideas
In Exercises 63 and 64, verify that is a factor of . Then find

so that 

63.

64.

65. Find the three cube roots of 8 by solving 

66. Find the three cube roots of by solving x3
= -64.-64

x3
= 8.

g1x2 = x - 1 - i; ƒ1x2 = x3
- 11 + i2x2

+ x - 1 - i

g1x2 = x - i; ƒ1x2 = x3
+ 13 - i2x2

- 4ix - 1

f = g # h.h1x2
ƒ1x2g1x2

ƒ1x2 = x3
- 12 - i2x2

+ 12 - 2i2x - 4.
-2

ƒ1x2 = x3
- ix2

+ 2ix + 2.

0 + 1i

1a + bi22 = i.

SECTION 2.5 Complex Zeros and the Fundamental Theorem of Algebra 217

Table 2.18 Powers of 1 i

Power Real Part Imaginary Part

0 1 0
1 1 1
2 0 2
3 2
4 0
5
6 0 -8

-4-4
-4
-2

�
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