
The function in the division algorithm is the dividend, and is the divisor. If
, we say divides evenly into .

The summary statement (1) is sometimes written in fraction form as follows:

(2)

For instance, to summarize the polynomial division example above we could write

3x3
+ 5x2

+ 8x + 7

3x + 2
= x2

+ x + 2 +

3

3x + 2
.

ƒ1x2
d1x2 = q1x2 +

r1x2
d1x2

ƒ1x2d1x2r1x2 = 0
d1x2ƒ1x2
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2.4 Real Zeros of Polynomial 
Functions

What you’ll learn about
• Long Division and the Division

Algorithm
• Remainder and Factor Theorems
• Synthetic Division
• Rational Zeros Theorem
• Upper and Lower Bounds

... and why
These topics help identify and
locate the real zeros of polyno-
mial functions.

Long Division and the Division Algorithm
We have seen that factoring a polynomial reveals its zeros and much about its graph.
Polynomial division gives us new and better ways to factor polynomials. First we 
observe that the division of polynomials closely resembles the division of integers:

Quotient

Dividend
Multiply: 
Subtract
Multiply: 
Subtract
Multiply: 
Remainder

Division, whether integer or polynomial, involves a dividend divided by a divisor to ob-
tain a quotient and a remainder. We can check and summarize our result with an equa-
tion of the form

For instance, to check or summarize the long divisions shown above we could write

The division algorithm contains such a summary polynomial equation, but with the div-
idend written on the left side of the equation.

32 * 112 + 3 = 3587  13x + 221x2
+ x + 22 + 3 = 3x3

+ 5x2
+ 8x + 7.

1Divisor21Quotient2 + Remainder = Dividend.

;33
2 # 13x + 22;6x + 464

;6x + 767
1x # 13x + 22;3x2

+ 2x32
;3x2

+ 8x + 7387
1x2 # 13x + 22;3x3

+ 2x232
;3x + 2�3x3

+ 5x2
+ 8x + 732�3587

;1x2
+ 1x + 2112

EXAMPLE 1  Using Polynomial Long Division
Use long division to find the quotient and remainder when is divided
by Write a summary statement in both polynomial and fraction form.

(continued)

2x2
+ x + 1.

2x4
- x3

- 2

Division Algorithm for Polynomials

Let and be polynomials with the degree of ƒ greater than or equal to
the degree of d, and Then there are unique polynomials and ,
called the quotient and remainder, such that

r1x2q1x2d1x2 Z 0.
d1x2ƒ1x2

(1)

where either or the degree of r is less than the degree of d.r1x2 = 0

ƒ1x2 = d1x2 # q1x2 + r1x2,
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THEOREM Remainder Theorem

If a polynomial is divided by , then the remainder is r = ƒ1k2.x - kƒ1x2

Example 2 shows a clever use of the Remainder Theorem that gives information about
the factors, zeros, and x-intercepts.

198 CHAPTER 2 Polynomial, Power, and Rational Functions

EXAMPLE 2  Using the Remainder Theorem
Find the remainder when is divided by

(a) (b) (c)

SOLUTION

Solve Numerically (by hand)

(a) We can find the remainder without doing long division! Using the Remainder
Theorem with we find that

r = ƒ122 = 31222 + 7122 - 20 = 12 + 14 - 20 = 6.

k = 2

x + 4.x + 1x - 2

ƒ1x2 = 3x2
+ 7x - 20

SOLUTION

Solve Algebraically

Quotient

Remainder

The division algorithm yields the polynomial form

Using equation 2, we obtain the fraction form

Support Graphically

Figure 2.34 supports the polynomial form of the summary statement.
Now try Exercise 1.

Remainder and Factor Theorems
An important special case of the division algorithm occurs when the divisor is of the
form , where k is a real number. Because the degree of is 1,
the remainder is a real number. We obtain the following simplified summary statement
for the division algorithm:

(3)

We use this special case of the division algorithm throughout the rest of the section.

Using equation (3), we evaluate the polynomial at :

So , which is the remainder. This reasoning yields the following theorem.ƒ1k2 = r

ƒ1k2 = 1k - k2q1k2 + r = 0 # q1k2 + r = 0 + r = r

x = kƒ1x2

ƒ1x2 = 1x - k2q1x2 + r

d1x2 = x - kd1x2 = x - k

2x4
- x3

- 2

2x2
+ x + 1

= x2
- x +

x - 2

2x2
+ x + 1

.

2x4
- x3

- 2 = 12x2
+ x + 121x2

- x2 + 1x - 22.

;x - 2
-2x3

- x2
- x

-2x3
- x2

+ 0x - 2
2x4

+ x3
+ x2

2x2
+ x + 1�2x4

- x3
+ 0x2

+ 0x - 2

;x2
- x

[–2, 2] by [–5, 15]

FIGURE 2.34 The graphs of
and

are a perfect match. (Example 1)
y2 = 12x2

+ x + 121x2
- x2 + 1x - 2)

y1 = 2x4
- x3

- 2
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Fundamental Connections for Polynomial Functions

For a polynomial function ƒ and a real number k, the following statements are
equivalent:

1. is a solution (or root) of the equation 

2. k is a zero of the function ƒ.

3. k is an x-intercept of the graph of 

4. is a factor of .ƒ1x2x - k

y = ƒ1x2.
ƒ1x2 = 0.x = k

Applying the ideas of the Factor Theorem to Example 2, we can factor 
by dividing it by the known factor .

So, In this case, there really is no need
to use long division or fancy theorems; traditional factoring methods can do the job.
However, for polynomials of degree 3 and higher, these sophisticated methods can be
quite helpful in solving equations and finding factors, zeros, and x-intercepts. Indeed,
the Factor Theorem ties in nicely with earlier connections we have made in the follow-
ing way.

ƒ1x2 = 3x2
+ 7x - 20 = 1x + 4213x - 52.

0
-5x - 20

-5x - 20
3x2

+ 12x

x + 4�3x2
+ 7x - 20

3x - 5

x + 47x - 20
ƒ1x2 = 3x2

+

SECTION 2.4 Real Zeros of Polynomial Functions 199

(b)

(c)

Interpret
Because the remainder in part (c) is 0, divides evenly into 

So, is a factor of , is a solution of 
, and is an x-intercept of the graph of We know all

of this without ever dividing, factoring, or graphing!

Support Numerically (using a grapher)

We can find the remainders of several division problems at once using the table fea-
ture of a grapher (Figure 2.35). Now try Exercise 13.

Our interpretation of Example 2c leads us to the following theorem.

y = 3x2
+ 7x - 20.-420 = 0

3x2
+ 7x --4ƒ1x2 = 3x2

+ 7x - 20x + 420.
ƒ1x2 = 3x2

+ 7x -x + 4

r = ƒ1-42 = 31-422 + 71-42 - 20 = 48 - 28 - 20 = 0.

r = ƒ1-12 = 31-122 + 71-1) - 20 = 3 - 7 - 20 = -24.X

Y1 = 3X^2+7X–20

–4
–3
–2
–1
0
1
2

0
–14
–22
–24
–20
–10
6

Y1

FIGURE 2.35 Table for
showing the remain-

ders obtained when is divided by ,
for .k = -4, -3, Á , 1, 2

x - kƒ1x2
ƒ1x2 = 3x2

+ 7x - 20

THEOREM Factor Theorem

A polynomial function has a factor if and only if ƒ1k2 = 0.x - kƒ1x2
Proof of the Factor Theorem
If has a factor , there is a polynomial

such that

By the uniqueness condition of the division algo-
rithm, is the quotient and 0 is the remain-
der, and by the Remainder Theorem, 

Conversely, if , the remainder
divides evenly into , and

is a factor of .ƒ1x2x - k
ƒ1x2r = 0, x - k

ƒ1k2 = 0

ƒ1k2 = 0.
g1x2

ƒ1x2 = 1x - k2g1x2 = 1x - k2g1x2 + 0.

g1x2
x - kƒ1x2

Synthetic Division
We continue with the important special case of polynomial division with the divisor

. The Remainder Theorem gave us a way to find remainders in this case without
long division. We now learn a method for finding both quotients and remainders for di-
vision by without long division. This shortcut method for the division of a poly-
nomial by a linear divisor is synthetic division.

We illustrate the evolution of this method below, progressing from long division
through two intermediate stages to synthetic division.

x - k
x - k

x - k
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Moving from stage to stage, focus on the coefficients and their relative positions. Mov-
ing from stage 1 to stage 2, we suppress the variable x and the powers of x, and then
from stage 2 to stage 3, we eliminate unneeded duplications and collapse vertically.

200 CHAPTER 2 Polynomial, Power, and Rational Functions

Stage 1 
Long Division

0
4x - 12

4x - 12
3x2

- 9x

3x2
- 5x - 12

2x3
- 6x2

x - 3�2x3
- 3x2

- 5x - 12

2x2
+ 3x + 4

Stage 2 
Variables Suppressed

0
4 -12

4 -12
3 -9

3 -5 -12
2 -6

-3�2 -3 -5 -12

2 3 4

Stage 3 
Collapsed Vertically

Dividend

Quotient, remainder2 3 4 0
-6 -9 -12

-3 2 -3 -5 -12

Finally, from stage 3 to stage 4, we change the sign of the number representing the divi-
sor and the signs of the numbers on the second line of our division scheme. These sign
changes yield two advantages:

• The number standing for the divisor is now k, its zero.

• Changing the signs in the second line allows us to add rather than subtract.

Stage 4 
Synthetic Division

Zero of divisor Dividend

Quotient, remainder

With stage 4 we have achieved our goal of synthetic division, a highly streamlined ver-
sion of dividing a polynomial by . How does this “bare bones” division work?
Example 3 explains the steps.

x - k

2 3 4 0
6 9 12

3  2 -3 -5 -12:

x - k

EXAMPLE 3  Using Synthetic Division
Divide by using synthetic division and write a sum-
mary statement in fraction form.

SOLUTION

Set Up

The zero of the divisor is 3, which we put in the divisor position. Because 
the dividend is in standard form, we write its coefficients in order in the dividend 
position, making sure to use a zero as a placeholder for any missing term. We leave
space for the line for products and draw a horizontal line below the space. (See 
below.)

Calculate

• Because the leading coefficient of the dividend must be the leading coefficient of
the quotient, copy the 2 into the first quotient position.

Zero of Divisor Dividend

Line for products
2

• Multiply the zero of the divisor (3) by the most recently determined coefficient of
the quotient (2). Write the product above the line and one column to the right.

 3  2 -3 -5 -12

x - 3

x - 32x3
- 3x2

- 5x - 12
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• Add the next coefficient of the dividend to the product just found and record the
sum below the line in the same column.

• Repeat the “multiply” and “add” steps until the last row is completed.

Zero of Divisor Dividend

Line for products

Line for sums Remainder2 3 4 0

6 9 12

 3  2 -3 -5 -12

Quotient

Interpret

The numbers in the last line are the coefficients of the quotient polynomial and the
remainder. The quotient must be a quadratic function. (Why?) So the quotient is

and the remainder is 0. We conclude that

Now try Exercise 7.

Rational Zeros Theorem
Real zeros of polynomial functions are either rational zeros—zeros that are rational
numbers—or irrational zeros—zeros that are irrational numbers. For example,

has the rational zeros and 3/2, and

has the irrational zeros and 

The Rational Zeros Theorem tells us how to make a list of all potential rational zeros
for a polynomial function with integer coefficients.

12.- 12

ƒ1x2 = x2
- 2 = 1x + 1221x - 122

-3/2

ƒ1x2 = 4x2
- 9 = 12x + 3212x - 32

2x3
- 3x2

- 5x - 12

x - 3
= 2x2

+ 3x + 4, x Z 3.

2x2
+ 3x + 4

('')''*

THEOREM Rational Zeros Theorem

Suppose ƒ is a polynomial function of degree of the form

with every coefficient an integer and If is a rational zero of ƒ,
where p and q have no common integer factors other than , then

• p is an integer factor of the constant coefficient , and

• q is an integer factor of the leading coefficient an.

a0

�1
x = p/qa0 Z 0.

ƒ1x2 = anxn
+ an-1xn-1

+
Á

+ a0,

n Ú 1

EXAMPLE 4  Finding the Rational Zeros
Find the rational zeros of 

SOLUTION Because the leading and constant coefficients are both 1, according
to the Rational Zeros Theorem, the only potential rational zeros of ƒ are 1 and 
We check to see whether they are in fact zeros of ƒ:

So ƒ has no rational zeros. Figure 2.36 shows that the graph of ƒ has three x-intercepts.
Therefore, ƒ has three real zeros. All three must be irrational numbers.

Now try Exercise 33.

ƒ1-12 = 1-123 - 31-122 + 1 = -3 Z 0

ƒ112 = 1123 - 31122 + 1 = -1 Z 0

-1.

ƒ1x2 = x3
- 3x2

+ 1.

[–4.7, 4.7] by [–3.1, 3.1]

FIGURE 2.36 The function
has three real zeros.

(Example 4)
ƒ1x2 = x3

- 3x2
+ 1
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In Example 4 the Rational Zeros Theorem gave us only two candidates for rational 
zeros, neither of which “checked out.” Often this theorem suggests many candidates, as
we see in Example 5. In such a case, we use technology and a variety of algebraic
methods to locate the rational zeros.
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EXAMPLE 5  Finding the Rational Zeros
Find the rational zeros of 

SOLUTION Because the leading coefficient is 3 and constant coefficient is , the
Rational Zeros Theorem yields several potential rational zeros of ƒ. We take an orga-
nized approach to our solution.

Potential Rational Zeros:

Figure 2.37 suggests that, among our candidates, 1, , and possibly or 
are the most likely to be rational zeros. We use synthetic division because it tells us
whether a number is a zero and, if so, how to factor the polynomial. To see whether 
1 is a zero of ƒ, we synthetically divide by :

Zero of Divisor Dividend

Remainder3 7 2 0
3 7 2

 1  3 4 -5 -2

x - 1ƒ1x2

-2/3-1/3-2

Factors of -2

Factors of 3
 : 

�1, �2

�1, �3
 : �1, �2, �

1

3
, �

2

3

-2

ƒ1x2 = 3x3
+ 4x2

- 5x - 2.

Quotient

Because the remainder is 0, is a factor of and 1 is a zero of ƒ. By the divi-
sion algorithm and factoring, we conclude

Therefore, the rational zeros of ƒ are 1, , and Now try Exercise 35.

Upper and Lower Bounds
We narrow our search for real zeros by using a test that identifies upper and lower
bounds for real zeros. A number k is an upper bound for the real zeros of ƒ if is
never zero when x is greater than k. On the other hand, a number k is a lower bound for
the real zeros of ƒ if is never zero when x is less than k. So if c is a lower bound
and d is an upper bound for the real zeros of a function ƒ, all of the real zeros of ƒ must
lie in the interval . Figure 2.38 illustrates this situation.3c, d4

ƒ1x2
ƒ1x2

-2.-1/3

 = 1x - 1213x + 121x + 22
 = 1x - 1213x2

+ 7x + 22
ƒ1x2 = 3x3

+ 4x2
- 5x - 2

ƒ1x2x - 1

('')''*

Upper and Lower Bound Tests for Real Zeros

Let ƒ be a polynomial function of degree with a positive leading coeffi-
cient. Suppose is divided by using synthetic division.

• If and every number in the last line is nonnegative (positive or zero),
then k is an upper bound for the real zeros of ƒ.

• If and the numbers in the last line are alternately nonnegative and 
nonpositive, then k is a lower bound for the real zeros of ƒ.

k … 0

k Ú 0

x - kƒ1x2 n Ú 1

[–4.7, 4.7] by [–10, 10]

FIGURE 2.37 The function
has three real

zeros. (Example 5)
ƒ1x2 = 3x3

+ 4x2
- 5x - 2

y

x
c

y � f (x)

d

FIGURE 2.38 c is a lower bound and d is
an upper bound for the real zeros of ƒ.
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EXAMPLE 7  Finding the Real Zeros of a Polynomial Function
Find all of the real zeros of 

SOLUTION From Example 6 we know that all of the real zeros of ƒ must lie in the
closed interval . So in Figure 2.39 we set our Xmin and Xmax accordingly.

Next we use the Rational Zeros Theorem.

Potential Rational Zeros:

We compare the x-intercepts of the graph in Figure 2.39 and our list of candidates,
and decide 4 and are the only potential rational zeros worth pursuing.

From this first synthetic division we conclude

and we now divide the cubic factor by 

(continued)

2 0 -4 0

 -1 0 2

-1/2 2 1 -4 -2

x + 1/2:2x3
+ x2

- 4x - 2

 = 1x - 4212x3
+ x2

- 4x - 22
ƒ1x2 = 2x4

- 7x3
- 8x2

+ 14x + 8

 2 1 -4 -2 0
8 4 -16 -8

 4  2 -7 -8 14 8

-1/2

Factors of 8

Factors of 2
 : 

�1, �2, �4, �8

�1, �2
 : �1, �2, �4, �8, �

1

2

3-2, 54
ƒ1x2 = 2x4

- 7x3
- 8x2

+ 14x + 8.

EXAMPLE 6  Establishing Bounds for Real Zeros
Prove that all of the real zeros of must lie in
the interval .

SOLUTION We must prove that 5 is an upper bound and is a lower bound on
the real zeros of ƒ. The function ƒ has a positive leading coefficient, so we employ
the upper and lower bound tests, and use synthetic division:

10 15 35 245
2 3 7 49 253 Last line

2 14 8

22 28
2 14 36 Last line

Because the last line in the first division scheme consists of all positive numbers, 5 is
an upper bound. Because the last line in the second division consists of numbers of
alternating signs, is a lower bound. All of the real zeros of ƒ must therefore lie in
the closed interval Now try Exercise 37.3-2, 54.-2

-14-11
-28-4

-8-7-2

 5  2 -7 -8  14   8

-2

3-2, 54 ƒ1x2 = 2x4
- 7x3

- 8x2
+ 14x + 8

[–2, 5] by [–50, 50]

FIGURE 2.39
has all of its real zeros in

(Example 7)3-2, 54.
8x2

+ 14x + 8
ƒ1x2 = 2x4

- 7x3
-
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A polynomial function cannot have more real zeros than its degree, but it can have
fewer. When a polynomial has fewer real zeros than its degree, the upper and lower
bound tests help us know that we have found them all, as illustrated by Example 8.

204 CHAPTER 2 Polynomial, Power, and Rational Functions

This second synthetic division allows us to complete the factoring of ƒ(x).

The zeros of ƒ are the rational numbers 4 and and the irrational numbers 
and Now try Exercise 49.12.

- 12-1/2

 = 1x - 4212x + 121x + 1221x - 122
 = 21x - 42ax +

1

2
b1x2

- 22
 = 1x - 42ax +

1

2
b12x2

- 42
ƒ1x2 = 1x - 4212x3

+ x2
- 4x - 22

EXAMPLE 8  Finding the Real Zeros of a Polynomial Function
Prove that all of the real zeros of lie in the interval 

, and find them.

SOLUTION We first prove that 1 is an upper bound and 0 is a lower bound for the
real zeros of ƒ. The function ƒ has a positive leading coefficient, so we use synthetic
division and the upper and lower bound tests:

Last line

Last line

Because the last line in the first division scheme consists of all nonnegative numbers,
1 is an upper bound. Because the last line in the second division consists of numbers
that are alternately nonnegative and nonpositive, 0 is a lower bound. All of the real
zeros of ƒ must therefore lie in the closed interval . So in Figure 2.40 we set our
Xmin and Xmax accordingly.

Next we use the Rational Zeros Theorem.

Potential Rational Zeros:

We compare the x-intercepts of the graph in Figure 2.40 and our list of candidates, and
decide ƒ has no rational zeros. From Figure 2.40 we see that ƒ changes sign on the 
interval Thus by the Intermediate Value Theorem, ƒ must have a real zero on
this interval. Because it is not rational, we conclude that it is irrational. Figure 2.41
shows that this lone real zero of ƒ is approximately 0.95. Now try Exercise 55.

30.8, 14.

�1, �2, �3, �6, �
1

2
, �

3

2
, �

1

5
, �

2

5
, �

3

5
, �

6

5
, �

1

10
, �

3

10

Factors of -6

Factors of 10
 : 

�1, �2, �3, �6

�1, �2, �5, �10
 :

30, 14

10 0 0 -3 1 -6
  0 0 0 0 0

 0  10 0 0 -3 1 -6

10 10  10 7 8 2
 10 10 10    7 8

 1  10 0 0 -3 1 -6

30, 14 ƒ1x2 = 10x5
- 3x2

+ x - 6

[0, 1] by [–8, 4]

FIGURE 2.40
(Example 8)

y = 10x5
- 3x2

+ x - 6.

[0, 1] by [–8, 4]

X=.95054589   Y=0
Zero

FIGURE 2.41 An approximation for the 
irrational zero of 
(Example 8)

ƒ1x2 = 10x5
- 3x2

+ x - 6.
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QUICK REVIEW 2.4 (For help, go to Sections A.2. and A.3.)

SECTION 2.4 EXERCISES

In Exercises 1–6, divide by , and write a summary statement
in polynomial form and fraction form.

1.

2.

3.

4.

5.

6.

In Exercises 7–12, divide using synthetic division, and write a summary
statement in fraction form.

7.

8.

9.

10.

11.

12.

In Exercises 13–18, use the Remainder Theorem to find the remainder
when ƒ(x) is divided by .

13.

14.

15.

16.

17.

18. ƒ1x2 = x5
- 2x4

+ 3x2
- 20x + 3; k = -1

ƒ1x2 = 2x3
- 3x2

+ 4x - 7; k = 2

ƒ1x2 = x3
- 3x + 4; k = -2

ƒ1x2 = x3
- x2

+ 2x - 1; k = -3

ƒ1x2 = x4
- 5; k = 1

ƒ1x2 = 2x2
- 3x + 1; k = 2

x - k

x8
- 1

x + 2

5x4
- 3x + 1

4 - x

3x4
+ x3

- 4x2
+ 9x - 3

x + 5

9x3
+ 7x2

- 3x

x - 10

2x4
- 5x3

+ 7x2
- 3x + 1

x - 3

x3
- 5x2

+ 3x - 2

x + 1

ƒ1x2 = x4
- 3x3

+ 6x2
- 3x + 5; d1x2 = x2

+ 1

ƒ1x2 = x4
- 2x3

+ 3x2
- 4x + 6; d1x2 = x2

+ 2x - 1

ƒ1x2 = 4x3
- 8x2

+ 2x - 1; d1x2 = 2x + 1

ƒ1x2 = x3
+ 4x2

+ 7x - 9; d1x2 = x + 3

ƒ1x2 = x3
- 1; d1x2 = x + 1

ƒ1x2 = x2
- 2x + 3; d1x2 = x - 1

d1x2ƒ1x2 In Exercises 19–24, use the Factor Theorem to determine whether the
first polynomial is a factor of the second polynomial.

19.

20.

21.

22.

23.

24.

In Exercises 25 and 26, use the graph to guess possible linear factors of
. Then completely factor with the aid of synthetic division.

25.

26. ƒ1x2 = 5x3
- 12x2

- 23x + 42

ƒ1x2 = 5x3
- 7x2

- 49x + 51

ƒ1x2ƒ1x2
x + 1; 2x10

- x9
+ x8

+ x7
+ 2x6

- 3

x + 2; 4x3
+ 9x2

- 3x - 10

x - 2; x3
- 3x - 2

x - 2; x3
+ 3x - 4

x - 3; x3
- x2

- x - 15

x - 1; x3
- x2

+ x - 1

[–5, 5] by [–75, 100]

[–5, 5] by [–75, 75]

In Exercises 5–10, factor the polynomial into linear factors.

5. 6.

7. 8.

9. 10. x4
+ x3

- 9x2
- 9xx3

+ 2x2
- x - 2

15x3
- 22x2

+ 8x4x2
+ 8x - 60

6x2
- 54x3

- 4x

Exercise numbers with a gray background indicate problems 
that the authors have designed to be solved without a calculator.

In Exercises 1–4, rewrite the expression as a polynomial in standard
form.

1. 2.

3. 4.
6x4

- 2x3
+ 7x2

3x2

x4
- 3x2

+ 7x5

x2

2x3
- 5x2

- 6x

2x

x3
- 4x2

+ 7x

x
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In Exercises 27–30, find the polynomial function with leading coeffi-
cient 2 that has the given degree and zeros.

27. Degree 3, with , 1, and 4 as zeros

28. Degree 3, with , 3, and as zeros

29. Degree 3, with 2, , and as zeros

30. Degree 4, with , , 0, and as zeros

In Exercises 31 and 32, using only algebraic methods, find the cubic
function with the given table of values. Check with a grapher.

31.

32.

In Exercises 33–36, use the Rational Zeros Theorem to write a list of
all potential rational zeros. Then determine which ones, if any, are 
zeros.

33.

34.

35.

36.

In Exercises 37–40, use synthetic division to prove that the number k is
an upper bound for the real zeros of the function ƒ.

37.

38.

39.

40.

In Exercises 41–44, use synthetic division to prove that the number k is
a lower bound for the real zeros of the function ƒ.

41.

42.

43.

44.

In Exercises 45–48, use the upper and lower bound tests to decide
whether there could be real zeros for the function outside the window
shown. If so, check for additional zeros.

45. ƒ1x2 = 6x4
- 11x3

- 7x2
+ 8x - 34

k = -4; ƒ1x2 = 3x3
- x2

- 5x - 3

k = 0; ƒ1x2 = x3
- 4x2

+ 7x - 2

k = -3; ƒ1x2 = x3
+ 2x2

+ 2x + 5

k = -1; ƒ1x2 = 3x3
- 4x2

+ x + 3

k = 3; ƒ1x2 = 4x4
- 6x3

- 7x2
+ 9x + 2

k = 2; ƒ1x2 = x4
- x3

+ x2
+ x - 12

k = 5; ƒ1x2 = 2x3
- 5x2

- 5x - 1

k = 3; ƒ1x2 = 2x3
- 4x2

+ x - 2

ƒ1x2 = 6x4
- x3

- 6x2
- x - 12

ƒ1x2 = 2x3
- x2

- 9x + 9

ƒ1x2 = 3x3
- 7x2

+ 6x - 14

ƒ1x2 = 6x3
- 5x - 1

5
2-1-3

3
2

1
2

-5-1

-2

46.

47.

48. ƒ1x2 = 2x5
- 5x4

- 141x3
+ 216x2

- 91x + 25

ƒ1x2 = x5
- 4x4

- 129x3
+ 396x2

- 8x + 3

ƒ1x2 = x5
- x4

+ 21x2
+ 19x - 3
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x 1 5

0 24 0 0ƒ1x2
-1-2

x 0 3 5

0 180 0 0ƒ1x2
-4

[–5, 5] by [–200, 1000]

[–5, 5] by [–1000, 1000]

[–5, 5] by [–1000, 1000]

[–5, 5] by [–1000, 1000]

In Exercises 49–56, find all of the real zeros of the function, finding exact
values whenever possible. Identify each zero as rational or irrational.

49.

50.

51.

52.

53.

54.

55.

56.

57. Setting Production Schedules The Sunspot Small
Appliance Co. determines that the supply function for their
EverCurl hair dryer is and that its de-
mand function is , where p is the price.
Determine the price for which the supply equals the demand

D1p2 = 80 - 0.02p2
S1p2 = 6 + 0.001p3

ƒ1x2 = 3x4
- 2x3

+ 3x2
+ x - 2

ƒ1x2 = 2x4
- 7x3

- 2x2
- 7x - 4

ƒ1x2 = x4
- x3

- 7x2
+ 5x + 10

ƒ1x2 = x4
- 3x3

- 6x2
+ 6x + 8

ƒ1x2 = x3
- 6x2

+ 7x + 4

ƒ1x2 = x3
+ x2

- 8x - 6

ƒ1x2 = x3
+ 3x2

- 3x - 9

ƒ1x2 = 2x3
- 3x2

- 4x + 6
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and the number of hair dryers corresponding to this equilib-
rium price.

58. Setting Production Schedules The Pentkon Cam-
era Co. determines that the supply and demand functions for their
35 mm–70 mm zoom lens are 
and , where p is the price. Deter-
mine the price for which the supply equals the demand and 
the number of zoom lenses corresponding to this equilibrium
price.

59. Find the remainder when is divided by 

60. Find the remainder when is divided by 

61. Let 

(a) Use the upper and lower bound tests to prove that all of the
real zeros of ƒ lie on the interval , .

(b) Find all of the rational zeros of ƒ.

(c) Factor using the rational zero(s) found in (b).

(d) Approximate all of the irrational zeros of ƒ.

(e) Use synthetic division and the irrational zero(s) found in
(d) to continue the factorization of begun in (c).

62. Lewis’s distance D from a motion detector is given by the data
in Table 2.15.

ƒ1x2

ƒ1x2

443-5

ƒ1x2 = x4
+ 2x3

- 11x2
- 13x + 38.

x - 1.-17x63

x + 1.x40
- 3

0.0004p3D1p2 = 1500 -

S1p2 = 200 - p + 0.000007p4

(A) is a factor of . (B) is a factor of .

(C) is a zero of . (D) 3 is an x-intercept of .

(E) The remainder when is divided by is zero.

66. Multiple Choice Let 
Which of the following is not a possible rational root of ƒ?

(A) (B) (C) 1 (D) 1/2 (E) 2/3

67. Multiple Choice Let 
Which of the following statements is not true?

(A) The remainder when is divided by 

(B) The remainder when is divided by is .

(C) The remainder when is divided by is 

(D) is not a factor of .

(E) is not evenly divisible by 

68. Multiple Choice Let 
Which of the following statements is not true?

(A) The remainder when is divided by is 7.

(B) The remainder when is divided by is 7.

(C) (D)

(E) ƒ does not have a real root.

Explorations
69. Archimedes’ Principle A spherical buoy has a radius

of 1 m and a density one-fourth that of seawater. By Archimedes’
Principle, the weight of the displaced water will equal the
weight of the buoy.

• Let the depth to which the buoy sinks.

• Let the density of seawater.

• Let the radius of the circle formed where buoy, air, and
water meet. See the figure below.

r =

d =

x =

ƒ102 = 5ƒ122 = 7

x - 2ƒ1x2
x2

+ 1ƒ1x2
ƒ1x2 = 1x2

+ 121x - 22 + 7.

x + 2.ƒ1x2
ƒ1x2x + 2

-3.x2
+ x - 1ƒ1x2

-3x - 2ƒ1x2
x + 2 is -3.ƒ1x2

ƒ1x2 = 1x + 221x2
+ x - 12 - 3.

-1-3

ƒ1x2 = 2x3
+ 7x2

+ 2x - 3.

x - 3ƒ1x2
ƒ1x2ƒ1x2x = 3

ƒ1x2x - 3ƒ1x2x + 3
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Table 2.15 Motion Detector Data

t (sec) D (m) t (sec) D (m)

0.0 1.00 4.5 0.99
0.5 1.46 5.0 0.84
1.0 1.99 5.5 1.28
1.5 2.57 6.0 1.87
2.0 3.02 6.5 2.58
2.5 3.34 7.0 3.23
3.0 2.91 7.5 3.78
3.5 2.31 8.0 4.40
4.0 1.57

(a) Find a cubic regression model, and graph it together with a
scatter plot of the data.

(b) Use the cubic regression model to estimate how far Lewis
is from the motion detector initially.

(c) Use the cubic regression model to estimate when Lewis
changes direction. How far from the motion detector is he
when he changes direction?

Standardized Test Questions
63. True or False The polynomial function has a factor

if and only if Justify your answer.

64. True or False If ,
then the remainder when is divided by is 3. Justify
your answer.

In Exercises 65–68, you may use a graphing calculator to solve the
problem.

65. Multiple Choice Let ƒ be a polynomial function with
Which of the following statements is not true?ƒ132 = 0.

x - 1ƒ1x2
ƒ1x2 = 1x - 1212x2

- x + 12 + 3

ƒ122 = 0.x + 2
ƒ1x2

1
1 � x

x

r

Notice in the figure that and
recall from geometry that the volume of submerged spherical 

cap is V =

px

6
# 13r 2

+ x22.

r 2
= 1 - 11 - x22 = 2x - x2,
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(a) Verify that the volume of the buoy is .

(b) Use your result from (a) to establish the weight of the buoy
as .

(c) Prove the weight of the displaced water is

(d) Approximate the depth to which the buoy will sink.

70. Archimedes’ Principle Using the scenario of 
Exercise 69, find the depth to which the buoy will sink if its
density is one-fifth that of seawater.

71. Biological Research Stephanie, a biologist who does
research for the poultry industry, models the population P of wild
turkeys, t days after being left to reproduce, with the function

(a) Graph the function for appropriate values of t.

(b) Find what the maximum turkey population is and when it
occurs.

(c) Assuming that this model continues to be accurate, when
will this turkey population become extinct?

(d) Writing to Learn Create a scenario that could
explain the growth exhibited by this turkey population.

72. Architectural Engineering Dave, an engineer at the
Trumbauer Group, Inc., an architectural firm, completes struc-
tural specifications for a 172-ft-long steel beam, anchored at
one end to a piling 20 ft above the ground. He knows that when
a 200-lb object is placed d feet from the anchored end, the
beam bends s feet where

(a) What is the independent variable in this polynomial
function?

(b) What are the dimensions of a viewing window that shows 
a graph for the values that make sense in this problem 
situation?

(c) How far is the 200-lb object from the anchored end if the
vertical deflection is 1.25 ft?

s = 13 * 10-72d21550 - d2.

y = P1t2
P1t2 = -0.00001t 3

+ 0.002t 2
+ 1.5t + 100.

pd # x13r 2
+ x22/6.

pd/3

4p/3 If is a polynomial of degree n, then

• The number of positive real zeros of ƒ is equal to the number
of variations in sign of , or that number less some even
number.

• The number of negative real zeros of ƒ is equal to the number
of variations in sign of , or that number less some even
number.

Use Descartes’ Rule of Signs to determine the possible num-
bers of positive and negative real zeros of the function.

(a) ƒ1x2 = x3
+ x2

- x + 1

ƒ1-x2

ƒ1x2
ƒ1x2 = anxn

+
Á

+ a0
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20 ft

172 ft

d

s

73. A classic theorem, Descartes’ Rule of Signs, tells us about the
number of positive and negative real zeros of a polynomial
function, by looking at the polynomial’s variations in sign. 
A variation in sign occurs when consecutive coefficients 
(in standard form) have opposite signs.

[–5, 5] by [–30, 30]

(b) ƒ1x2 = x3
+ x2

+ x + 1

(c)

(d)

Extending the Ideas
74. Writing to Learn Graph each side of the Example 3

summary equation:

How are these functions related? Include a discussion of the
domain and continuity of each function.

75. Writing to Learn Explain how to carry out the follow-
ing division using synthetic division. Work through the steps
with complete explanations. Interpret and check your result.

76. Writing to Learn The figure shows a graph of
Explain how to

use a grapher to justify the statement.

 L 1x + 3.1021x - 0.521x - 1.1321x - 1.372
 ƒ1x2 = x4

+ 0.1x3
- 6.5x2

+ 7.9x - 2.4

ƒ1x2 = x4
+ 0.1x3

- 6.5x2
+ 7.9x - 2.4.

4x3
- 5x2

+ 3x + 1

2x - 1

 g1x2 = 2x2
+ 3x + 4,  x Z 3

ƒ1x2 =

2x3
- 3x2

- 5x - 12

x - 3
 and

g1x2 = 5x4
+ x2

- 3x - 2

ƒ1x2 = 2x3
+ x - 3
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77. (a) Writing to Learn Write a paragraph that describes
how the zeros of are re-
lated to the zeros of In what
ways does this example illustrate how the Rational Zeros
Theorem can be applied to find the zeros of a polynomial
with rational number coefficients?

(b) Find the rational zeros of 

(c) Find the rational zeros of ƒ1x2 = x3
-

5

2
 x2

-

37

12
 x +

5

2
.

ƒ1x2 = x3
-

7

6
 x2

-

20

3
 x +

7

2
.

g1x2 = x3
+ 3x2

+ 6x - 9.
ƒ1x2 = 11/32x3

+ x2
+ 2x - 3

78. Use the Rational Zeros Theorem to prove is irrational.

79. Group Activity Work in groups of three. Graph

(a) Use grapher methods to find approximate real number 
zeros.

(b) Identify a list of four linear factors whose product could be
called an approximate factorization of .

(c) Discuss what graphical and numerical methods you could
use to show that the factorization from part (b) is reasonable.

ƒ1x2

ƒ1x2 = x4
+ x3

- 8x2
- 2x + 7.

12
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