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2.3 Polynomial Functions of
Higher Degree with Modeling

What you’ll learn about
• Graphs of Polynomial Functions
• End Behavior of Polynomial

Functions
• Zeros of Polynomial Functions
• Intermediate Value Theorem
• Modeling

... and why
These topics are important in
modeling and can be used to
provide approximations to
more complicated functions, 
as you will see if you study 
calculus.

EXAMPLE 1  Graphing Transformations of Monomial 
Functions

Describe how to transform the graph of an appropriate monomial function
into the graph of the given function. Sketch the transformed graph 

by hand and support your answer with a grapher. Compute the location of the 
y-intercept as a check on the transformed graph.

(a) (b)

SOLUTION

(a) You can obtain the graph of by shifting the graph of 
one unit to the left, as shown in Figure 2.19a. The y-intercept of 

the graph of g is , which appears to agree with the 
transformed graph.

(b) You can obtain the graph of by shifting the graph of 
two units to the right and five units up, as shown in Figure 2.19b. 

The y-intercept of the graph of h is ,
which appears to agree with the transformed graph.

Now try Exercise 1.

h102 = -10 - 224 + 5 = -16 + 5 = -11
ƒ1x2 = -x4

h1x2 = -1x - 224 + 5

g102 = 410 + 123 = 4
ƒ1x2 = 4x3

g1x2 = 41x + 123
h1x2 = -1x - 224 + 5g1x2 = 41x + 123

ƒ1x2 = anxn

In Example 1 we use the fact from Section 2.1 that the constant term of a polynomial
function p is both the initial value of the function and the y-intercept of the graph
to provide a quick and easy check of the transformed graphs.
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FIGURE 2.19 (a) The graphs of
and 

(b) The graphs of 
and (Example 1)ƒ1x2 = -x4.

h1x2 = -1x - 224 + 5
ƒ1x2 = 4x3.g1x2 = 41x + 1)3

Graphs of Polynomial Functions
As we saw in Section 2.1, a polynomial function of degree 0 is a constant function
and graphs as a horizontal line. A polynomial function of degree 1 is a linear func-
tion; its graph is a slant line. A polynomial function of degree 2 is a quadratic func-
tion; its graph is a parabola.

We now consider polynomial functions of higher degree. These include cubic functions
(polynomials of degree 3) and quartic functions (polynomials of degree 4). Recall that
a polynomial function of degree n can be written in the form

Here are some important definitions associated with polynomial functions and this
equation.

p1x2 = anxn
+ an-1xn-1

+
Á

+ a2x2
+ a1x + a0, an Z 0.

DEFINITION The Vocabulary of Polynomials

• Each monomial in this sum— —is a term of the poly-
nomial.

• A polynomial function written in this way, with terms in descending degree,
is written in standard form.

• The constants , are the coefficients of the polynomial.

• The term is the leading term, and is the constant term.a0anxn

an-1, Á , a0an

anxn, an-1xn-1, Á , a0
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Example 2 shows what can happen when simple monomial functions are combined to
obtain polynomial functions. The resulting polynomials are not mere translations of
monomials.
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EXAMPLE 2  Graphing Combinations of Monomial Functions
Graph the polynomial function, locate its extrema and zeros, and explain how it is 
related to the monomials from which it is built.

(a) (b)

SOLUTION

(a) The graph of is shown in Figure 2.20a. The function ƒ is in-
creasing on , with no extrema. The function factors as

and has one zero at 

The general shape of the graph is much like the graph of its leading term , 
but near the origin ƒ behaves much like its other term x, as shown in Figure 2.20b.
The function ƒ is odd, just like its two building block monomials.

(b) The graph of is shown in Figure 2.21a. The function g has a 
local maximum of about 0.38 at and a local minimum of about 

at The function factors as and has
zeros located at , and 

The general shape of the graph is much like the graph of its leading term , but
near the origin g behaves much like its other term , as shown in Figure 2.21b.
The function g is odd, just like its two building block monomials.

Now try Exercise 7.

-x
x3

x = 1.x = -1, x = 0
g1x2 = x1x + 121x - 12x L 0.58.-0.38

x L -0.58
g1x2 = x3

- x

x3

x = 0.ƒ1x2 = x1x2
+ 12(- q , q2ƒ1x2 = x3

+ x

g1x2 = x3
- xƒ1x2 = x3

+ x[–4.7, 4.7] by [–3.1, 3.1]

(a)

[–4.7, 4.7] by [–3.1, 3.1]

(b)

FIGURE 2.20 The graph of
(a) by itself and (b) with

(Example 2a)y = x.
ƒ1x2 = x3

+ x

[–4.7, 4.7] by [–3.1, 3.1]

(a)

[–4.7, 4.7] by [–3.1, 3.1]

(b)

FIGURE 2.21 The graph of (a) by itself and (b) with (Example 2b)y = -x.g1x2 = x3
- x

We have now seen a few examples of graphs of polynomial functions, but are these typ-
ical? What do graphs of polynomials look like in general?

To begin our answer, let’s first recall that every polynomial function is defined and con-
tinuous for all real numbers. Not only are graphs of polynomials unbroken without jumps
or holes, but they are smooth, unbroken lines or curves, with no sharp corners or cusps.
Typical graphs of cubic and quartic functions are shown in Figures 2.22 and 2.23.

Imagine horizontal lines passing through the graphs in Figures 2.22 and 2.23, acting as
x-axes. Each intersection would be an x-intercept that would correspond to a zero of the
function. From this mental experiment, we see that cubic functions have at most three
zeros and quartic functions have at most four zeros. Focusing on the high and low
points in Figures 2.22 and 2.23, we see that cubic functions have at most two local ex-
trema and quartic functions have at most three local extrema. These observations gen-
eralize in the following way:
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End Behavior of Polynomial Functions
An important characteristic of polynomial functions is their end behavior. As we shall
see, the end behavior of a polynomial is closely related to the end behavior of its lead-
ing term. Exploration 1 examines the end behavior of monomial functions, which are
potential leading terms for polynomial functions.

Technology Note
For a cubic, when you change the horizontal
window by a factor of k, it usually is a good idea
to change the vertical window by a factor of 
Similar statements can be made about polynomi-
als of other degrees.

k3.

THEOREM Local Extrema and Zeros of Polynomial Functions

A polynomial function of degree n has at most local extrema and at most
n zeros.

n - 1

SECTION 2.3 Polynomial Functions of Higher Degree with Modeling 187

(a)

a3 > 0

(b)

a3 < 0

FIGURE 2.22 Graphs of four typical cubic functions: (a) two with positive and (b) two with
negative leading coefficients.

(a)

a4 > 0

(b)

a4 < 0

FIGURE 2.23 Graphs of four typical quartic functions: (a) two with positive and (b) two
with negative leading coefficients.

EXPLORATION 1 Investigating the End Behavior of

Graph each function in the window by Describe the end

behavior using and 

1. (a) (b)

(c) (d)

2. (a) (b)

(c) (d)

3. (a) (b)

(c) (d) ƒ1x2 = 2.5x3ƒ1x2 = 3x4

ƒ1x2 = -2x2ƒ1x2 = -0.3x5

ƒ1x2 = -0.5x2ƒ1x2 = 2x6

ƒ1x2 = 0.6x4ƒ1x2 = -3x4

ƒ1x2 = -0.5x7ƒ1x2 = x5

ƒ1x2 = -x3ƒ1x2 = 2x3

lim
x: -q

 ƒ1x2.lim
x: q

 ƒ1x2
3-15, 154.3-5, 54

ƒ1x2 � an x
n

Describe the patterns you observe. In particular, how do the values of the coef-

ficient and the degree n affect the end behavior of ?ƒ1x2 = an x
nan
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Example 3 illustrates the link between the end behavior of a polynomial 
and its leading term anxn.Á

+ a1x + a0

ƒ1x2 = anxn +

188 CHAPTER 2 Polynomial, Power, and Rational Functions

[–7, 7] by [–25, 25]

(a)

[–14, 14] by [–200, 200]

(b)

[–56, 56] by [–12800, 12800]

(c)

FIGURE 2.24 As the viewing window 
gets larger, the graphs of 

and look more and
more alike. (Example 3)

g1x2 = x34x2
- 5x - 3

ƒ1x2 = x3
-

EXAMPLE 3  Comparing the Graphs of a Polynomial 
and Its Leading Term

Superimpose the graphs of and in succes-
sively larger viewing windows, a process called zoom out. Continue zooming out
until the graphs look nearly identical.

SOLUTION

Figure 2.24 shows three views of the graphs of and 
in progressively larger viewing windows. As the dimensions of the win-

dow increase, it gets harder to tell them apart. Moreover,

and

Now try Exercise 13.

Example 3 illustrates something that is true for all polynomials: In sufficiently large
viewing windows, the graph of a polynomial and the graph of its leading term appear
to be identical. Said another way, the leading term dominates the behavior of the poly-
nomial as Based on this fact and what we have seen in Exploration 1, there
are four possible end behavior patterns for a polynomial function. The power and coef-
ficient of the leading term tell us which one of the four patterns occurs.

ƒ x ƒ : q .

lim
x: -q

 ƒ1x2 = lim
x: -q  

g1x2 = - q .lim
x: q

 ƒ1x2 = lim
x: q

 g1x2 = q

g1x2 = x3
ƒ1x2 = x3

- 4x2
- 5x - 3

g1x2 = x3ƒ1x2 = x3
- 4x2

- 5x - 3

Leading Term Test for Polynomial End Behavior

For any polynomial function , the limits

and are determined by the degree n of the polynomial and its leading 

coefficient :an

lim
x: -q

 ƒ1x2
 lim
x: q

 ƒ1x2ƒ1x2 = an x
n

+
Á

+ a1x + a0

y

x
an > 0
n odd

an < 0
n odd

an > 0
n even

an < 0
n even

lim f(x) = �
x→�

lim f(x) = –�
x→–�

y

x

lim f(x) = –�
x→�

lim f(x) = �
x→–�

y

x

lim f(x) = �
x→�

lim f(x) = �
x→–�

y

x

lim f(x) = –�
x→–�

lim f(x) = –�
x→�
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From Example 5, we see that if a polynomial function ƒ is presented in factored form,
each factor corresponds to a zero , and if k is a real number, is an
x-intercept of the graph of 

When a factor is repeated, as in , we say the polynomial
function has a repeated zero. The function ƒ has two repeated zeros. Because the factor

occurs three times, 2 is a zero of multiplicity 3. Similarly, is a zero of multi-
plicity 2. The following definition generalizes this concept.

-1x - 2

ƒ1x2 = 1x - 2231x + 122
y = ƒ1x2. 1k, 02x = k1x - k2
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EXAMPLE 4  Applying Polynomial Theory
Graph the polynomial in a window showing its extrema and zeros and its end behav-
ior. Describe the end behavior using limits.

(a)

(b)

SOLUTION

(a) The graph of is shown in Figure 2.25a. The
function ƒ has 2 extrema and 3 zeros, the maximum number possible for a
cubic. and 

(b) The graph of is shown in Figure 2.25b.
The function g has 3 extrema and 4 zeros, the maximum number possible for a
quartic. and Now try Exercise 19.

Zeros of Polynomial Functions
Recall that finding the real number zeros of a function ƒ is equivalent to finding the
x-intercepts of the graph of or the solutions to the equation 
Example 5 illustrates that factoring a polynomial function makes solving these three
related problems an easy matter.

ƒ1x2 = 0.y = ƒ1x2

lim
x: -q

 g1x2 = q . lim
x: q

 g1x2 = q

g1x2 = 2x4
+ 2x3

- 22x2
- 18x + 35

lim
x: -q

 ƒ1x2 = - q . lim
x: q

 ƒ1x2 = q

ƒ1x2 = x3
+ 2x2

- 11x - 12

g1x2 = 2x4
+ 2x3

- 22x2
- 18x + 35

ƒ1x2 = x3
+ 2x2

- 11x - 12

[–5, 5] by [–25, 25]

(a)

[–5, 5] by [–50, 50]

(b)

FIGURE 2.25 (a) 
, (b) 
(Example 4)18x + 35.

g1x2 = 2x4
+ 2x3

- 22x2
-11x - 12

ƒ1x2 = x3
+ 2x2

-

[–5, 5] by [–15, 15]

(–2, 0) (0, 0) (3, 0)

FIGURE 2.26 The graph of
showing the three 

x-intercepts. (Example 5)
y = x3

- x2
- 6x,

EXAMPLE 5  Finding the Zeros of a Polynomial Function
Find the zeros of 

SOLUTION

Solve Algebraically

We solve the related equation by factoring:

Remove common factor x.

Factor quadratic.

Zero factor property

So the zeros of ƒ are 0, 3, and 

Support Graphically

Use the features of your calculator to approximate the zeros of ƒ. Figure 2.26 shows
that there are three values. Based on our algebraic solution we can be sure that these
values are exact. Now try Exercise 33.

-2.

 x = 0, x = 3, or x = -2

 x = 0, x - 3 = 0, or x + 2 = 0

 x1x - 3)1x + 22 = 0

 x1x2
- x - 62 = 0

x3
- x2

- 6x = 0

ƒ1x2 = 0

ƒ1x2 = x3
- x2

- 6x.

DEFINITION Multiplicity of a Zero of a Polynomial Function

If ƒ is a polynomial function and is a factor of ƒ but is
not, then c is a zero of multiplicity m of ƒ.

1x - c2m+11x - c2m
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THEOREM Intermediate Value Theorem

If a and b are real numbers with and if ƒ is continuous on the interval 
, then ƒ takes on every value between and . In other words, if 

is between and , then for some number c in .
In particular, if and have opposite signs (i.e., one is negative and the
other is positive), then for some number c in (Figure 2.29).3a, b4ƒ1c2 = 0

ƒ1b2ƒ1a2 3a, b4y0 = ƒ1c2ƒ1b2ƒ1a2 y0ƒ1b2ƒ1a23a, b4 a 6 b

A zero of multiplicity is a repeated zero. Notice in Figure 2.27 that the graph
of ƒ just kisses the x-axis without crossing it at , but that the graph of ƒ crosses
the x-axis at . This too can be generalized.12, 02 1-1, 02m Ú 2
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EXAMPLE 7  Using the Intermediate Value Theorem
Explain why a polynomial function of odd degree has at least one real zero.

SOLUTION Let ƒ be a polynomial function of odd degree. Because ƒ is odd, the
leading term test tells us that So there exist real numbers

a and b with and such that ƒ(a) and ƒ(b) have opposite signs. Because every
polynomial function is defined and continuous for all real numbers, ƒ is continuous
on the interval . Therefore, by the Intermediate Value Theorem, for
some number c in , and thus c is a real zero of ƒ. Now try Exercise 61.

In practice, the Intermediate Value Theorem is used in combination with our other
mathematical knowledge and technological know-how.

3a, b4 ƒ1c2 = 03a, b4
a 6 b

lim
x: q

ƒ1x2 = - lim
x: -q

ƒ1x2.

EXAMPLE 6  Sketching the Graph of a Factored Polynomial
State the degree and list the zeros of the function State
the multiplicity of each zero and whether the graph crosses the x-axis at the corre-
sponding x-intercept. Then sketch the graph of ƒ by hand.

SOLUTION The degree of ƒ is 5 and the zeros are and The graph
crosses the x-axis at because the multiplicity 3 is odd. The graph does not
cross the because the multiplicity 2 is even. Notice that values of ƒ
are positive for , positive for , and negative for 
Figure 2.28 shows a sketch of the graph of ƒ. Now try Exercise 39.

Intermediate Value Theorem
The Intermediate Value Theorem tells us that a sign change implies a real zero.

x 6 -2.-2 6 x 6 1x 7 1
x-axis at x = 1

x = -2
x = 1.x = -2

ƒ1x2 = 1x + 2231x - 122.

[–4, 4] by [–10, 10]

FIGURE 2.27 The graph of
showing the 

x-intercepts.
ƒ1x2 = 1x - 2231x + 122,

Zeros of Odd and Even Multiplicity

If a polynomial function ƒ has a real zero c of odd multiplicity, then the graph
of ƒ crosses the x-axis at and the value of ƒ changes sign at 
If a polynomial function ƒ has a real zero c of even multiplicity, then the graph of ƒ
does not cross the x-axis at and the value of ƒ does not change sign at x = c.1c, 02

x = c.1c, 02

In Example 5 none of the zeros were repeated. Because a nonrepeated zero has multi-
plicity 1, and 1 is odd, the graph of a polynomial function crosses the x-axis and has a
sign change at every nonrepeated zero (Figure 2.26). Knowing where a graph crosses the
x-axis and where it doesn’t is important in curve sketching and in solving inequalities.y

10

6
4
2

–4
–2

–6
–8

–10

–5 –4 –3 –2 –1
x

54321

FIGURE 2.28 A sketch of the graph of
showing the 

x-intercepts.
ƒ1x2 = 1x + 2231x - 122

y

f (a)

f (b)

y0 � 0

c

a

b
x

FIGURE 2.29 If and 
ƒ is continuous on , then there is a zero

between a and b.x = c
3a, b4

ƒ1a2 6 0 6 ƒ1b2
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EXAMPLE 9  Designing a Box
Dixie Packaging Company has contracted to make boxes with a volume of approxi-
mately Squares are to be cut from the corners of a 20-in. by 25-in. piece of
cardboard, and the flaps folded up to make an open box. (See Figure 2.31.) What size
squares should be cut from the cardboard?

SOLUTION

Model

We know that the volume .
So let

Solve Numerically and Graphically

For a volume of 484, we solve the equation Because
the width of the cardboard is 20 in., We use the table in Figure 2.32
to get a sense of the volume values to set the window for the graph in Figure 2.33.
The cubic volume function intersects the constant volume of 484 at and

(continued)
x L 6.87.

x L 1.22

0 … x … 10.
x125 - 2x2120 - 2x2 = 484.

 V = x125 - 2x2120 - 2x2
 20 - 2x = width of the box

 25 - 2x = length of the box

x = edge of cut-out square (height of box)

V = height * length * width

484 in.3.

EXAMPLE 8  Zooming to Uncover Hidden Behavior
Find all of the real zeros of 

SOLUTION

Solve Graphically

Because ƒ is of degree 4, there are at most four zeros. The graph in Figure 2.30a sug-
gests a single zero (multiplicity 1) around and a triple zero (multiplicity 3)
around Closer inspection around in Figure 2.30b reveals three separate
zeros. Using the grapher, we find the four zeros to be , ,
and (See the margin note.) Now try Exercise 75.x L -3.10.

x = 0.50x L 1.37, x L 1.13
x = 1x = 1.

x = -3

ƒ1x2 = x4
+ 0.1x3

- 6.5x2
+ 7.9x - 2.4.

Exact vs. Approximate
In Example 8, note that is an exact
answer; the others are approximate. Use by-hand
substitution to confirm that is an exact
real zero.

x = 1/2

x = 0.50

[–5, 5] by [–50, 50]

(a) (b)

[0, 2] by [–0.5, 0.5]

FIGURE 2.30 Two views of (Example 8)ƒ1x2 = x4
+ 0.1x3

- 6.5x2
+ 7.9x - 2.4.

x

x

25

20

FIGURE 2.31

X

Y1 = X(20–2X)(25–...

1
2
3
4
5
6
7

414
672
798
816
750
624
462

Y1

FIGURE 2.32 A table to get a feel for the
volume values in Example 9.

[0, 10] by [0, 1000]

FIGURE 2.33
and (Example 9)y2 = 484.

120 - 2x2y1 = x125 - 2x2

Modeling
In the problem-solving process presented in Section 1.1, step 2 is to develop a mathe-
matical model of the problem. When the model being developed is a polynomial func-
tion of higher degree, the algebraic and geometric thinking required can be rather in-
volved. In solving Example 9 you may find it helpful to make a physical model out of
paper or cardboard.
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Generally we want a reason beyond “it fits well” to choose a model for genuine data.
However, when no theoretical basis exists for picking a model, a balance between
goodness of fit and simplicity of model is sought. For polynomials, we try to pick a
model with the lowest possible degree that has a reasonably good fit.

EXPLORATION 2 Interpolating Points with a Polynomial
1. Use cubic regression to fit a curve through the four points given in the

table.

2. Use quartic regression to fit a curve through the five points given in the
table.

How good is the fit in each case? Why?

x 1 3 8

y 2 0.5 1.25-0.2

-2

x 3 4 5 6 8

y 8 3-1-4-2

192 CHAPTER 2 Polynomial, Power, and Rational Functions

QUICK REVIEW 2.3 (For help, go to Sections A.2. and P.5.)

In Exercises 7–10, solve the equation mentally.

7.

8.

9.

10. 1x + 6)21x + 4)41x - 5)3
= 0

1x + 6231x + 321x - 1.52 = 0

x1x + 221x - 52 = 0

x1x - 12 = 0

Interpret

Squares with lengths of approximately 1.22 in. or 6.87 in. should be cut from the
cardboard to produce a box with a volume of Now try Exercise 67.

Just as any two points in the Cartesian plane with different x-values and different 
y-values determine a unique slant line and its related linear function, any three non-
collinear points with different x-values determine a quadratic function. In general,

points positioned with sufficient generality determine a polynomial function of
degree n. The process of fitting a polynomial of degree n to points is
polynomial interpolation. Exploration 2 involves two polynomial interpolation
problems.

(n + 1)
(n + 1)

484 in.3.

Exercise numbers with a gray background indicate problems 
that the authors have designed to be solved without a calculator.

In Exercises 1–6, factor the polynomial into linear factors.

1. 2.

3. 4.

5. 6. 6x3
- 22x2

+ 12x3x3
- 5x2

+ 2x

6x2
- 5x + 13x2

- 11x + 6

x2
- 11x + 28x2

- x - 12
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SECTION 2.3 EXERCISES

In Exercises 1–6, describe how to transform the graph of an appropriate
monomial function into the graph of the given polynomial
function. Sketch the transformed graph by hand and support your an-
swer with a grapher. Compute the location of the y-intercept as a check
on the transformed graph.

1. 2.

3. 4.

5. 6.

In Exercises 7 and 8, graph the polynomial function, locate its extrema
and zeros, and explain how it is related to the monomials from which it
is built.

7. 8.

In Exercises 9–12, match the polynomial function with its graph. Ex-
plain your choice. Do not use a graphing calculator.

g1x2 = 2x4
- 5x2ƒ1x2 = -x4

+ 2x

g1x2 = 31x - 124 - 2g1x2 = -21x + 224 - 3

g1x2 =

2

3
1x - 323 + 1g1x2 = -  

1

2
1x + 123 + 2

g1x2 = -1x + 523g1x2 = 21x - 323

ƒ1x2 = xn
20.

21.

22.

23.

24.

In Exercises 25–28, describe the end behavior of the polynomial func-
tion using and 

25.

26.

27.

28.

In Exercises 29–32, match the polynomial function with its graph.
Approximate all of the real zeros of the function.

ƒ1x2 = x3
- x4

+ 3x2
- 2x + 7

ƒ1x2 = 7x2
- x3

+ 3x - 4

ƒ1x2 = -x3
+ 7x2

- 4x + 3

ƒ1x2 = 3x4
- 5x2

+ 3

lim
x: -q

 ƒ1x2.lim
x: q

 ƒ1x2
ƒ1x2 = -3x4

- 5x3
+ 15x2

- 5x + 19

ƒ1x2 = 2x4
- 5x3

- 17x2
+ 14x + 41

ƒ1x2 = (2x + 121x - 423
ƒ1x2 = 1x - 2221x + 121x - 32
ƒ1x2 = x3

- 2x2
- 41x + 42

[–5, 6] by [–200, 400]

(a)

[–5, 6] by [–200, 400]

(b)

[–5, 6] by [–200, 400]

(c)

[–5, 6] by [–200, 400]

(d)

9.

10.

11.

12.

In Exercises 13–16, graph the function pairs in the same series of view-
ing windows. Zoom out until the two graphs look nearly identical and
state your final viewing window.

13. and 

14. and 

15. and 

16. and 

In Exercises 17–24, graph the function in a viewing window that shows
all of its extrema and x-intercepts. Describe the end behavior using
limits.

17.

18.

19. ƒ1x2 = -x3
+ 4x2

+ 31x - 70

ƒ1x2 = 12x - 3214 - x21x + 12
ƒ1x2 = 1x - 121x + 221x + 32

g1x2 = 3x3ƒ1x2 = 3x3
- 12x + 17

g1x2 = 2x3ƒ1x2 = 2x3
+ 3x2

- 6x - 15

g1x2 = x3ƒ1x2 = x3
+ 2x2

- x + 5

g1x2 = x3ƒ1x2 = x3
- 4x2

- 5x - 3

ƒ1x2 = -x5
+ 3x4

+ 16x3
- 2x2

- 95x - 44

ƒ1x2 = x5
- 8x4

+ 9x3
+ 58x2

- 164x + 69

ƒ1x2 = -9x3
+ 27x2

+ 54x - 73

ƒ1x2 = 7x3
- 21x2

- 91x + 104

[–4, 4] by [–200, 200]

(a)

[–4, 4] by [–200, 200]

(b)

[–2, 2] by [–10, 50]

(c)

[–4, 4] by [–50, 50]

(d)

29.

30.

31.

32.

In Exercises 33–38, find the zeros of the function algebraically.

33. 34.

35. 36.

37. 38.

In Exercises 39–42, state the degree and list the zeros of the polynomial
function. State the multiplicity of each zero and whether the graph
crosses the x-axis at the corresponding x-intercept. Then sketch the
graph of the polynomial function by hand.

39.

40.

41.

42. ƒ1x2 = 71x - 3221x + 524
ƒ1x2 = 1x - 1)31x + 222
ƒ1x2 = -x31x - 22
ƒ1x2 = x1x - 322

ƒ1x2 = 5x3
- 5x2

- 10xƒ1x2 = 3x3
- x2

- 2x

ƒ1x2 = x3
- 25xƒ1x2 = 9x2

- 3x - 2

ƒ1x2 = 3x2
+ 4x - 4ƒ1x2 = x2

+ 2x - 8

ƒ1x2 = 4x4
- 8x3

- 19x2
+ 23x - 6

ƒ1x2 = 44x4
- 65x3

+ x2
+ 17x + 3

ƒ1x2 = 35x3
- 134x2

+ 93x - 18

ƒ1x2 = 20x3
+ 8x2

- 83x + 55
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In Exercises 43–48, graph the function in a viewing window that shows
all of its x-intercepts and approximate all of its zeros.

43.

44.

45.

46.

47.

48.

In Exercises 49–52, find the zeros of the function algebraically or
graphically.

49.

50.

51.

52.

In Exercises 53–56, using only algebra, find a cubic function with the
given zeros. Support by graphing your answer.

53. 3, , 6

54. , 3, 

55. 56.

57. Use cubic regression to fit a curve through the four points
given in the table.

58. Use cubic regression to fit a curve through the four points
given in the table.

59. Use quartic regression to fit a curve through the five points given
in the table.

60. Use quartic regression to fit a curve through the five points given
in the table.

In Exercises 61–62, explain why the function has at least one real zero.

61. Writing to Learn

62. Writing to Learn

63. Stopping Distance A state highway patrol safety divi-
sion collected the data on stopping distances in Table 2.14 in
the next column.

(a) Draw a scatter plot of the data.

(b) Find the quadratic regression model.

ƒ1x2 = x9
- x + 50

ƒ1x2 = x7
+ x + 100

1, 1 + 12, 1 - 1213, - 13, 4

-5-2

-4

ƒ1x2 = x3
- 4x2

- 44x + 96

ƒ1x2 = x3
- 7x2

- 49x + 55

ƒ1x2 = x3
+ 2x2

- 109x - 110

ƒ1x2 = x3
- 36x

ƒ1x2 = 2x5
- 11x4

+ 4x3
+ 47x2

- 42x - 8

ƒ1x2 = x4
+ 3x3

- 9x2
+ 2x + 3

ƒ1x2 = -x4
- 3x3

+ 7x2
+ 2x + 8

ƒ1x2 = x3
+ 2x2

- 4x - 7

ƒ1x2 = -x3
+ 3x2

+ 7x - 2

ƒ1x2 = 2x3
+ 3x2

- 7x - 6

64. Analyzing Profit Economists for Smith Brothers, Inc.,
find the company profit P by using the formula ,
where R is the total revenue generated by the business and C is
the total cost of operating the business.

(a) Using data from past years, the economists determined that
models total revenue, and 

models the total cost of doing
business, where x is the number of customers patronizing
the business. How many customers must Smith Bros. have
to be profitable each year?

(b) How many customers must there be for Smith Bros. to real-
ize an annual profit of $60,000?

65. Circulation of Blood
Research conducted at a na-
tional health research project
shows that the speed at which a
blood cell travels in an artery
depends on its distance from
the center of the artery. The
function 
models the velocity (in cen-
timeters per second) of a cell
that is r centimeters from the
center of an artery.

v = 1.19 - 1.87r 2

C1x2 = 12,225 + 0.00135x3
R1x2 = 0.0125x2

+ 412x

P = R - C

194 CHAPTER 2 Polynomial, Power, and Rational Functions

x 1 3

y 22 25 12 -5

-1-3

x 1 4 7

y 2 5 9 26

-2

x 3 4 5 6 8

y 8 3-11-4-7

x 0 4 5 7 13

y 8 3-12-19-21

Table 2.14 Highway Safety Division

Speed (mph) Stopping Distance (ft)

10 15.1
20 39.9
30 75.2
40 120.5
50 175.9

r

(a) Find a graph of v that reflects values of v appropriate for
this problem. Record the viewing-window dimensions.

(b) If a blood cell is traveling at 0.975 cm/sec, estimate the
distance the blood cell is from the center of the artery.

66. Volume of a Box Dixie Packaging Co. has contracted to
manufacture a box with no top that is to be made by removing
squares of width x from the corners of a 15-in. by 60-in. piece
of cardboard.

(c) Superimpose the regression curve on the scatter plot.

(d) Use the regression model to predict the stopping distance
for a vehicle traveling at 25 mph.

(e) Use the regression model to predict the speed of a car if the
stopping distance is 300 ft.
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(a) Show that the volume of the box is modeled by 

(b) Determine x so that the volume of the box is at least 450 in.3
x160 - 2x2115 - 2x2.

V1x2 = 74. Multiple Choice

SECTION 2.3 Polynomial Functions of Higher Degree with Modeling 195

60 in.

15 in.

x
x

67. Volume of a Box Squares of width x are removed from
a 10-cm by 25-cm piece of cardboard, and the resulting edges
are folded up to form a box with no top. Determine all values
of x so that the volume of the resulting box is at most 

68. Volume of a Box The function 
represents the volume of a box that has been made by re-

moving squares of width x from each corner of a rectangular
sheet of material and then folding up the sides. What values are
possible for x?

Standardized Test Questions
69. True or False The graph of 

crosses the x-axis between and Justify your an-
swer.

70. True or False If the graph of is ob-
tained by translating the graph of to the right, then a
must be positive. Justify your answer.

In Exercises 71–74, solve the problem without using a calculator.

71. Multiple Choice What is the y-intercept of the graph of

(A) 7 (B) 5 (C) 3 (D) 2 (E) 1

72. Multiple Choice What is the multiplicity of the zero
in 

(A) 1 (B) 2 (C) 3 (D) 5 (E) 7

In Exercises 73 and 74, which of the specified functions might have the
given graph?

73. Multiple Choice

ƒ1x2 = 1x - 2221x + 2231x +  327?x = 2

ƒ1x2 = 21x - 123 + 5?

ƒ1x2 = x2
g1x2 = 1x + a22

x = 2.x = 1
ƒ1x2 = x3

- x2
- 2

4x3
V = 2666x - 210x2

+

175 cm3.

y

–2
x

2

(A)

(B)

(C)

(D)

(E) ƒ1x2 = -x1x + 221x - 222
ƒ1x2 = -x1x + 2221x - 22
ƒ1x2 = -x21x + 221x - 22
ƒ1x2 = -x1x + 221x - 22
ƒ1x2 = -x1x + 2212 - x2

y

–2
x

2

(A)

(B)

(C)

(D)

(E)

Explorations
In Exercises 75 and 76, two views of the function are given.

75. Writing to Learn Describe why each view of the function

by itself, may be considered inadequate.

ƒ1x2 = x5
- 10x4

+ 2x3
+ 64x2

- 3x - 55,

ƒ1x2 = x21x + 221x - 222
ƒ1x2 =  x1x + 221x - 222
ƒ1x2 = x21x + 221x - 22
ƒ1x2 = x1x + 22212 - x2
ƒ1x2 = x1x + 2221x - 22

[–5, 10] by [–7500, 7500]

(a)

[–3, 4] by [–250, 100]

(b)

[–6, 4] by [–2000, 2000]

(a)

[0.5, 1.5] by [–1, 1]

(b)

76. Writing to Learn Describe why each view of the function

by itself, may be considered inadequate.

ƒ1x2 = 10x4
+ 19x3

- 121x2
+ 143x - 51,

In Exercises 77–80, the function has hidden behavior when viewed in
the window by . Describe what behavior is hidden,
and state the dimensions of a viewing window that reveals the hidden
behavior.

77.

78.

79.

80. ƒ1x2 = 33x3
- 100x2

+ 101x - 40

ƒ1x2 = 11x3
- 10x2

+ 3x + 5

ƒ1x2 = 0.51x3
- 8x2

+ 12.99x - 5.942
ƒ1x2 = 10x3

- 40x2
+ 50x - 20

3-10, 1043-10, 104
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Extending the Ideas
81. Graph the left side of the equation

Then explain why there are no real numbers a, b, and c that
make the equation true. (Hint: Use your knowledge of 
and transformations.)

82. Graph the left side of the equation

Then explain why there are no real numbers a, b, and c that
make the equation true.

83. Looking Ahead to Calculus The figure shows a
graph of both and the line L
defined by y = 51x - 22 + 7.

ƒ1x2 = -x3
+ 2x2

+ 9x - 11

x4
+ 3x3

- 2x - 3 = a1x - b24 + c.

y = x3

31x3
- x2 = a1x - b23 + c.

(c) Consider the special case and Show both the
graph of ƒ and the line from part b in the window 
by .

85. Derive an Algebraic Model of a Problem
Show that the distance x in the figure is a solution of the equa-
tion and find the
value of D by following these steps.

x4
- 16x3

+ 500x2
- 8000x + 32,000 = 0

3-30, 304
3-5, 54

a = 3.n = 3

196 CHAPTER 2 Polynomial, Power, and Rational Functions

[0, 5] by [–10, 15]

(2, 7)

(a) Confirm that the point is a point of intersection of
the two graphs.

(b) Zoom in at point Q to develop a visual understanding that
is a linear approximation for 

near 

(c) Recall that a line is tangent to a circle at a point P if it in-
tersects the circle only at point P. View the two graphs in
the window by , and explain why that
definition of tangent line is not valid for the graph of ƒ.

84. Looking Ahead to Calculus Consider the function
where n is an odd integer.

(a) Suppose that a is a positive number. Show that the slope of
the line through the points and , 
is 

(b) Let Find an equation of the line through
point , with the slope an-1.ƒ1x0221x0

x0 = a1/1n-12.
an-1.

ƒ1-a22Q1-aP1a, ƒ1a22
ƒ1x2 = xn

3-25, 2543-5, 54

x = 2.
y = ƒ1x2y = 51x - 22 + 7

Q12, 72

30

8
20

D
D – u u

x

y

(a) Use the similar triangles in the diagram and the properties
of proportions learned in geometry to show that

(b) Show that 

(c) Show that Then substitute for y, and sim-
plify to obtain the desired degree 4 equation in x.

(d) Find the distance D.

86. Group Learning Activity Consider functions of the
form where b is a nonzero real
number.

(a) Discuss as a group how the value of b affects the graph of
the function.

(b) After completing (a), have each member of the group
(individually) predict what the graphs of 

and will look
like.

(c) Compare your predictions with each other. Confirm
whether they are correct.

g1x2 = x3
- 15x2

+ x + 115x2
+ x + 1

ƒ1x2 = x3
+

ƒ1x2 = x3
+ bx2

+ x + 1

y2
- x2

= 500.

y =

8x

x - 8
.

8
x

=

y - 8

y
.
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