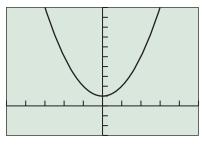
What you'll learn about

- Complex Numbers
- Operations with Complex Numbers
- Complex Conjugates and Division
- Complex Solutions of Quadratic Equations

... and why

The zeros of polynomials are complex numbers.



[-5, 5] by [-3, 10]

FIGURE P.39 The graph of $f(x) = x^2 + 1$ has no *x*-intercepts.

Historical Note

René Descartes (1596–1650) coined the term imaginary in a time when negative solutions to equations were considered *false*. Carl Friedrich Gauss (1777–1855) gave us the term complex number and the symbol *i* for $\sqrt{-1}$. Today practical applications of complex numbers abound.

P.6 Complex Numbers

Complex Numbers

Figure P.39 shows that the function $f(x) = x^2 + 1$ has no real zeros, so $x^2 + 1 = 0$ has no real-number solutions. To remedy this situation, mathematicians in the 17th century extended the definition of \sqrt{a} to include negative real numbers a. First the number $i = \sqrt{-1}$ is defined as a solution of the equation $i^2 + 1 = 0$ and is the **imaginary unit**. Then for any negative real number $\sqrt{a} = \sqrt{|a|} \cdot i$.

The extended system of numbers, called the *complex numbers*, consists of all real numbers and sums of real numbers and real number multiples of *i*. The following are all examples of complex numbers:

$$-6, 5i, \sqrt{5}, -7i, \frac{5}{2}i + \frac{2}{3}, -2 + 3i, 5 - 3i, \frac{1}{3} + \frac{4}{5}i$$

DEFINITION Complex Number

A **complex number** is any number that can be written in the form

a + bi,

where a and b are real numbers. The real number a is the **real part**, the real number b is the **imaginary part**, and a + bi is the **standard form**.

A real number *a* is the complex number a + 0i, so all real numbers are also complex numbers. If a = 0 and $b \neq 0$, then a + bi becomes bi, and is an **imaginary number**. For instance, 5i and -7i are imaginary numbers.

Two complex numbers are **equal** if and only if their real and imaginary parts are equal. For example,

x + yi = 2 + 5i if and only if x = 2 and y = 5.

Operations with Complex Numbers

Adding complex numbers is done by adding their real and imaginary parts separately. Subtracting complex numbers is also done using the same parts.

DEFINITION Addition and Subtraction of Complex Numbers

If a + bi and c + di are two complex numbers, then

Sum:	(a + bi) + (c + di) = (a + c) + (b + d)i,
Difference:	(a + bi) - (c + di) = (a - c) + (b - d)i.

- **EXAMPLE 1** Adding and Subtracting Complex Numbers

(a) (7 - 3i) + (4 + 5i) = (7 + 4) + (-3 + 5)i = 11 + 2i(b) (2 - i) - (8 + 3i) = (2 - 8) + (-1 - 3)i = -6 - 4iNow try Exercise 3. The **additive identity** for the complex numbers is 0 = 0 + 0i. The **additive inverse** of a + bi is -(a + bi) = -a - bi because

$$(a + bi) + (-a - bi) = 0 + 0i = 0.$$

Many of the properties of real numbers also hold for complex numbers. These include:

- Commutative properties of addition and multiplication,
- · Associative properties of addition and multiplication, and
- Distributive properties of multiplication over addition and subtraction.

Using these properties and the fact that $i^2 = -1$, complex numbers can be multiplied by treating them as algebraic expressions.

EXAMPLE 2 Multiplying Complex Numbers

$$(2+3i) \cdot (5-i) = 2(5-i) + 3i(5-i)$$

= 10 - 2i + 15i - 3i²
= 10 + 13i - 3(-1)
= 13 + 13i
Now try Exercise 9.

We can generalize Example 2 as follows:

$$(a + bi)(c + di) = ac + adi + bci + bdi2$$
$$= (ac - bd) + (ad + bc)i$$

Many graphers can perform basic calculations on complex numbers. Figure P.40 shows how the operations of Examples 1 and 2 look on some graphers.

We compute positive integer powers of complex numbers by treating them as algebraic expressions.

- **EXAMPLE 3** Raising a Complex Number to a Power

If
$$z = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$
, find z^2 and z^3 .

SOLUTION

$$z^{2} = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)$$
$$= \frac{1}{4} + \frac{\sqrt{3}}{4}i + \frac{\sqrt{3}}{4}i + \frac{3}{4}i^{2}$$
$$= \frac{1}{4} + \frac{2\sqrt{3}}{4}i + \frac{3}{4}(-1)$$
$$= -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
$$z^{3} = z^{2} \cdot z = \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)$$
$$= -\frac{1}{4} - \frac{\sqrt{3}}{4}i + \frac{\sqrt{3}}{4}i + \frac{3}{4}i^{2}$$
$$= -\frac{1}{4} + 0i + \frac{3}{4}(-1)$$
$$= -1$$

Figure P.41 supports these results numerically.

Now try Exercise 27.

(7–3i)+(4 +5i)	
	11+2i
(2–i)–(8+3i)	e 10
(2+3i)*(5–i)	-6-4i
	13+13i

FIGURE P.40 Complex number operations on a grapher. (Examples 1 and 2)

FIGURE P.41 The square and cube of a complex number. (Example 3)

Example 3 demonstrates that $1/2 + (\sqrt{3}/2)i$ is a cube root of -1 and a solution of $x^3 + 1 = 0$. In Section 2.5, complex zeros of polynomial functions will be explored in depth.

Complex Conjugates and Division

The product of the complex numbers a + bi and a - bi is a positive real number:

$$(a + bi) \cdot (a - bi) = a^2 - (bi)^2 = a^2 + b^2.$$

We introduce the following definition to describe this special relationship.

DEFINITION Complex Conjugate

The **complex conjugate** of the complex number z = a + bi is

 $\overline{z} = \overline{a + bi} = a - bi.$

The **multiplicative identity** for the complex numbers is 1 = 1 + 0i. The **multiplicative inverse**, or **reciprocal**, of z = a + bi is

$$z^{-1} = \frac{1}{z} = \frac{1}{a+bi} = \frac{1}{a+bi} \cdot \frac{a-bi}{a-bi} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i.$$

In general, a quotient of two complex numbers, written in fraction form, can be simplified as we just simplified 1/z—by multiplying the numerator and denominator of the fraction by the complex conjugate of the denominator.

• **EXAMPLE 4** Dividing Complex Numbers

Write the complex number in standard form.

(a)
$$\frac{2}{3-i}$$
 (b) $\frac{5+i}{2-3i}$

SOLUTION Multiply the numerator and denominator by the complex conjugate of the denominator.

(a)
$$\frac{2}{3-i} = \frac{2}{3-i} \cdot \frac{3+i}{3+i}$$

 $= \frac{6+2i}{3^2+1^2}$
 $= \frac{6}{10} + \frac{2}{10}i$
 $= \frac{3}{5} + \frac{1}{5}i$
(b) $\frac{5+i}{2-3i} = \frac{5+i}{2-3i} \cdot \frac{2+3i}{2+3i}$
 $= \frac{10+15i+2i+3i^2}{2^2+3^2}$
 $= \frac{7+17i}{13}$
 $= \frac{7}{13} + \frac{17}{13}i$
Now try Exercise 33.

Complex Solutions of Quadratic Equations

Recall that the solutions of the quadratic equation $ax^2 + bx + c = 0$, where a, b, and c are real numbers and $a \neq 0$, are given by the quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

The radicand $b^2 - 4ac$ is the **discriminant**, and tells us whether the solutions are real numbers. In particular, if $b^2 - 4ac < 0$, the solutions involve the square root of a

negative number and so lead to complex-number solutions. In all, there are three cases, which we now summarize:

Discriminant of a Quadratic Equation

For a quadratic equation $ax^2 + bx + c = 0$, where a, b, and c are real numbers and $a \neq 0$,

- If $b^2 4ac > 0$, there are two distinct real solutions.
- If $b^2 4ac = 0$, there is one repeated real solution.
- If $b^2 4ac < 0$, there is a complex conjugate pair of solutions.

EXAMPLE 5 Solving a Quadratic Equation

Solve $x^2 + x + 1 = 0$.

SOLUTION

Solve Algebraically

Using the quadratic formula with a = b = c = 1, we obtain

$$x = \frac{-(1) \pm \sqrt{(1)^2 - 4(1)(1)}}{2(1)} = \frac{-(1) \pm \sqrt{-3}}{2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i.$$

So the solutions are $-1/2 + (\sqrt{3}/2)i$ and $-1/2 - (\sqrt{3}/2)i$, a complex conjugate pair.

Confirm Numerically

Substituting $-1/2 + (\sqrt{3}/2)i$ into the original equation, we obtain

$$\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^2 + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) + 1$$
$$= \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) + 1 = 0.$$

By a similar computation we can confirm the second solution.

Now try Exercise 41.

QUICK REVIEW P.6

In Exercises 1-4, add or subtract, and simplify.

1. (2x + 3) + (-x + 6) **2.** (3y - x) + (2x - y)

3.
$$(2a + 4d) - (a + 2d)$$
 4. $(6z - 1) - (z + 3)$

In Exercises 5–10, multiply and simplify.

5. (x - 3)(x + 2)

6.
$$(2x - 1)(x + 3)$$

7. $(x - \sqrt{2})(x + \sqrt{2})$
8. $(x + 2\sqrt{3})(x - 2\sqrt{3})$
9. $[x - (1 + \sqrt{2})][x - (1 - \sqrt{2})]$
10. $[x - (2 + \sqrt{3})][x - (2 - \sqrt{3})]$

SECTION P.6 EXERCISES

Exercise numbers with a gray background indicate problems that the authors have designed to be solved *without a calculator*.

In Exercises 1–8, write the sum or difference in the standard form a + bi without using a calculator.

1.
$$(2-3i) + (6+5i)$$
 2. $(2-3i) + (3-4i)$

3.
$$(7 - 3i) + (6 - i)$$

4. $(2 + i) - (9i - 3)$
5. $(2 - i) + (3 - \sqrt{-3})$
6. $(\sqrt{5} - 3i) + (-2 + \sqrt{-9})$
7. $(i^2 + 3) - (7 + i^3)$
8. $(\sqrt{7} + i^2) - (6 - \sqrt{-81})$

In Exercises 9–16, write the product in standard form without using a calculator.

9. (2+3i)(2-i)10. (2-i)(1+3i)11. (1-4i)(3-2i)12. (5i-3)(2i+1)13. (7i-3)(2+6i)14. $(\sqrt{-4}+i)(6-5i)$ 15. (-3-4i)(1+2i)16. $(\sqrt{-2}+2i)(6+5i)$

In Exercises 17–20, write the expression in the form bi, where b is a real number.

17. $\sqrt{-16}$	18. $\sqrt{-25}$
19. $\sqrt{-3}$	20. $\sqrt{-5}$

In Exercises 21–24, find the real numbers x and y that make the equation true.

21. 2 + 3i = x + yi **22.** 3 + yi = x - 7i **23.** (5 - 2i) - 7 = x - (3 + yi)**24.** (x + 6i) = (3 - i) + (4 - 2yi)

In Exercises 25–28, write the complex number in standard form.

25.
$$(3 + 2i)^2$$

26. $(1 - i)^3$
27. $\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)^4$
28. $\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)^3$

In Exercises 29–32, find the product of the complex number and its conjugate.

29. 2 - 3i **30.** 5 - 6i**31.** -3 + 4i **32.** $-1 - \sqrt{2}i$

In Exercises 33–40, write the expression in standard form without using a calculator.

33.
$$\frac{1}{2+i}$$

34. $\frac{i}{2-i}$
35. $\frac{2+i}{2-i}$
36. $\frac{2+i}{3i}$
37. $\frac{(2+i)^2(-i)}{1+i}$
38. $\frac{(2-i)(1+2i)}{5+2i}$
39. $\frac{(1-i)(2-i)}{1-2i}$
40. $\frac{(1-\sqrt{2}i)(1+i)}{(1+\sqrt{2}i)}$

In Exercises 41-44, solve the equation.

41.
$$x^2 + 2x + 5 = 0$$

42. $3x^2 + x + 2 = 0$
43. $4x^2 - 6x + 5 = x + 1$
44. $x^2 + x + 11 = 5x - 8$

Standardized Test Questions

- **45.** True or False There are no complex numbers z satisfying $z = -\overline{z}$. Justify your answer.
- **46. True or False** For the complex number $i, i + i^2 + i^3 + i^4 = 0$. Justify your answer.

In Exercises 47-50, solve the problem without using a calculator.

47. Multiple Choice Which of the following is the standard form for the product
$$(2 + 3i)(2 - 3i)$$
?

(A)
$$-5 + 12i$$
 (B) $4 - 9i$ (C) $13 - 3i$
(D) -5 (E) $13 + 0i$

48. Multiple Choice Which of the following is the standard form for the quotient $\frac{1}{i}$?

(A) 1 (B)
$$-1$$
 (C) *i* (D) $-1/i$ (E) $0 - i$

49. Multiple Choice Assume that 2 - 3i is a solution of $ax^2 + bx + c = 0$, where *a*, *b*, *c* are real numbers. Which of the following is also a solution of the equation?

(A)
$$2 + 3i$$
 (B) $-2 - 3i$ (C) $-2 + 3i$
(D) $3 + 2i$ (E) $\frac{1}{2 - 3i}$

50. Multiple Choice Which of the following is the standard form for the power $(1 - i)^3$? (A) -4i (B) -2 + 2i (C) -2 - 2i (D) 2 + 2i (E) 2 - 2i

Explorations

51. Group Activity The Powers of i

- (a) Simplify the complex numbers $i, i^2, ..., i^8$ by evaluating each one.
- (**b**) Simplify the complex numbers $i^{-1}, i^{-2}, \ldots, i^{-8}$ by evaluating each one.
- (c) Evaluate i^0 .
- (d) **Writing to Learn** Discuss your results from (a)–(c) with the members of your group, and write a summary statement about the integer powers of *i*.
- 52. Writing to Learn Describe the nature of the graph of $f(x) = ax^2 + bx + c$ when *a*, *b*, and *c* are real numbers and the equation $ax^2 + bx + c = 0$ has nonreal complex solutions.

Extending the Ideas

- **53.** Prove that the difference between a complex number and its conjugate is a complex number whose real part is 0.
- **54.** Prove that the product of a complex number and its complex conjugate is a complex number whose imaginary part is zero.
- **55.** Prove that the complex conjugate of a product of two complex numbers is the product of their complex conjugates.
- **56.** Prove that the complex conjugate of a sum of two complex numbers is the sum of their complex conjugates.
- 57. Writing to Learn Explain why -i is a solution of $x^2 ix + 2 = 0$ but *i* is not.