
Although you probably computed them correctly, there is more going on in number 4
and number 5 in the above exploration than first meets the eye. We will have more to
say about these “infinite” summations toward the end of this section.

Sums of Arithmetic and Geometric Sequences
One of the most famous legends in the lore of mathematics concerns the German math-
ematician Karl Friedrich Gauss (1777–1855), whose mathematical talent was apparent
at a very early age. One version of the story has Gauss, at age ten, being in a class that
was challenged by the teacher to add up all the numbers from 1 to 100. While his class-
mates were still writing down the problem, Gauss walked to the front of the room to
present his slate to the teacher. The teacher, certain that Gauss could only be guessing,
refused to look at his answer. Gauss simply placed it face down on the teacher’s desk,
declared “There it is,” and returned to his seat. Later, after all the slates had been col-
lected, the teacher looked at Gauss’s work, which consisted of a single number: the cor-
rect answer. No other student (the legend goes) got it right.

The important feature of this legend for mathematicians is how the young Gauss got the
answer so quickly. We’ll let you reproduce his technique in Exploration 2.
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9.5 Series

Summation Notation
We want to look at the formulas for summing the terms of arithmetic and geomet-
ric sequences, but first we need a notation for writing the sum of an indefinite
number of terms. The capital Greek letter sigma provides our shorthand 
notation for a “summation.”

1g2
What you’ll learn about
• Summation Notation
• Sums of Arithmetic 

and Geometric Sequences
• Infinite Series
• Convergence of Geometric 

Series

... and why
Infinite series are at the heart 
of integral calculus.

EXPLORATION 1 Summing with Sigma

Sigma notation is actually even more versatile than the definition above suggests. See
if you can determine the number represented by each of the following expressions.

1. 2. 3. 4. 5.

(If you’re having trouble with number 5, here’s a hint: Write the sum as a decimal!)

a
q

k=1
 

3

10ka
q

n=1
sin 1np2a

12

n=0
cos 1np2a

8

k=5
k2

a
5

k=1
3k

Summations on a Calculator
If you think of summations as summing 
sequence values, it is not hard to translate
sigma notation into calculator syntax. Here,
in calculator syntax, are the first three sum-
mations in Exploration 1. (Don’t try these on
your calculator until you have first figured
out the answers with pencil and paper.)

1. sum seq 3K, K, 1, 5

2. sum seq K^2, K, 5, 8

3. sum seq cos N N, 0, 12 22p2,111
2211
2211

DEFINITION Summation Notation

In summation notation, the sum of the terms of the sequence 
is denoted

which is read “the sum of from to n.”

The variable k is called the index of summation.

k = 1ak

a
n

k=1
ak

5a1, a2, Á , an6
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If this story is true, then the youthful Gauss had discovered a fact that his elders knew
about arithmetic sequences. If you write a finite arithmetic sequence forward on one
line and backward on the line below it, then all the pairs stacked vertically sum to the
same number. Multiplying this number by the number of terms n and dividing by 2
gives us a shortcut to the sum of the n terms. We state this result as a theorem.

SECTION 9.5 Series 679

EXPLORATION 2 Gauss’s Insight

Your challenge is to find the sum of the natural numbers from 1 to 100 without a
calculator.

1. On a wide piece of paper, write the sum

“ ”

2. Underneath this sum, write the sum 

“ ”

3. Add the numbers two-by-two in vertical columns and notice that you get the
same identical sum 100 times. What is it?

4. What is the sum of the 100 identical numbers referred to in part 3?

5. Explain why half the answer in part 4 is the answer to the challenge. Can you
find it without a calculator?

100 + 99 + 98 + Á
+  3 + 2 + 1.

1 + 2 + 3 + Á
+  98 + 99 + 100.

THEOREM Sum of a Finite Arithmetic Sequence

Let be a finite arithmetic sequence with common difference d.
Then the sum of the terms of the sequence is

=

n

2
 12a1 + 1n - 12d2

= naa1 + an

2
b

a
n

k=1
ak = a1 + a2 +

Á
+  an

5a1, a2, Á , an6

Proof

We can construct the sequence forward by starting with and adding d each time, or
we can construct the sequence backward by starting at and subtracting d each time.
We thus get two expressions for the sum we are looking for:

Summing vertically, we get

a
n

k=1
ak = naa1 + an

2
b

2a
n

k=1
ak = n1a1 + an2

2a
n

k=1
ak = 1a1 + an2 + 1a1 + an2 + Á

+  1a1 + an2

a
n

k=1
ak = an + 1an - d2 + 1an - 2d2 + Á

+  1an - 1n - 12d2
a
n

k=1
ak = a1 + 1a1 + d2 + 1a1 + 2d2 + Á

+  1a1 + 1n - 12d2

an

a1

6965_CH09_pp641-734.qxd  1/20/10  3:28 PM  Page 679



If we substitute for we get the alternate formula

a
n

k=1
ak =

n

2
 12a1 + 1n - 12d2.

an,a1 + 1n - 12d
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EXAMPLE 1  Summing the Terms of an Arithmetic Sequence
A corner section of a stadium has 8 seats along the front row. Each successive row
has two more seats than the row preceding it. If the top row has 24 seats, how many
seats are in the entire section?

SOLUTION The numbers of seats in the rows form an arithmetic sequence with

Solving , we find that

Applying the Sum of a Finite Arithmetic Sequence Theorem, the total number of
seats in the section is 

We can support this answer numerically by computing the sum on a calculator:

Now try Exercise 7.

As you might expect, there is also a convenient formula for summing the terms of a 
finite geometric sequence.

sum1seq18 + 1N - 122, N, 1, 92 = 144

918 + 242/2 = 144.

 n = 9
 8 = n - 1

 16 = 1n - 12122
 24 = 8 + 1n - 12122

an = a1 + 1n - 12d
a1 = 8,  an = 24,  and  d = 2.

THEOREM Sum of a Finite Geometric Sequence

Let be a finite geometric sequence with common ratio .

Then the sum of the terms of the sequence is

=

a111 - r n2
1 - r

.

a
n

k=1
ak = a1 + a2 +

Á
+  an

r Z 15a1, a2, a3, Á , an6

Proof

Because the sequence is geometric, we have

.

Therefore,

.r # a
n

k=1
ak = a1

# r + a1
# r 2 + Á

+  a1
# r n-1

+ a1
# r n

a
n

k=1
ak = a1 + a1

# r + a1
# r 2 + Á

+  a1
# r n-1
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If we now subtract the lower summation from the one above it, we have (after eliminat-
ing a lot of zeros):

a
n

k=1
ak =

a111 - r n2
1 - r

aa
n

k=1
akb11 - r2 = a111 - r n2

aa
n

k=1
akb - r # aa

n

k=1
akb = a1 - a1

# r n
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EXAMPLE 2  Summing the Terms of a Geometric Sequence
Find the sum of the geometric sequence 4, , 4/9, 

SOLUTION We can see that and The nth term is ,
which means that (Remember that the exponent on the nth term is ,
not n.) Applying the Sum of a Finite Geometric Sequence Theorem, we find that

3.000016935.

We can support this answer by having the calculator do the actual summing:

3.000016935. Now try Exercise 13.

As one practical application of the Sum of a Finite Geometric Sequence Theorem, we
will tie up a loose end from Section 3.6, wherein you learned that the future value FV of
an ordinary annuity consisting of n equal periodic payments of R dollars at an interest
rate i per compounding period (payment interval) is

.

We can now consider the mathematics behind this formula. The n payments remain in
the account for different lengths of time and so earn different amounts of interest. The
total value of the annuity after n payment periods (see Example 8 in Section 3.6) is

The terms of this sum form a geometric sequence with first term R and common ratio
. Applying the Sum of a Finite Geometric Sequence Theorem, the sum of the n

terms is

Infinite Series
If you change the “11” in the calculator sum in Example 2 to higher and higher num-
bers, you will find that the sum approaches a value of 3. This is no coincidence. In the
language of limits,

= 3

 =

411 - 02
4/3

 lim
x: q

a
n

k=1
4a -  

1

3
b k-1

=  lim
x: q

411 - 1-1/32n2
1 - 1-1/32

 = R 

11 + i2n - 1

i

 = R 

1 - 11 + i2n
- i

 FV =

R11 - 11 + i2n2
1 - 11 + i2

11 + i2
FV = R + R11 + i2 + R11 + i22 + Á

+  R11 + i2n-1.

FV = R 

11 + i2n - 1

i

sum1seq141-1/32^1N - 12, N, 1, 112 =

a
11

n=1
4a -  

1

3
bn-1

=

411 - 1-1/32112
1 - 1-1/32 L

n - 1n = 11.
41-1/3210r = -1/3.a1 = 4

-4/27, Á , 41-1/3210.-4/3
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This gives us the opportunity to extend the usual meaning of the word “sum,” which al-
ways applies to a finite number of terms being added together. By using limits, we can
make sense of expressions in which an infinite number of terms are added together.
Such expressions are called infinite series.
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DEFINITION Infinite Series

An infinite series is an expression of the form

a
q

n=1
an = a1 + a2 + Á

+  an + Á .

The first thing to understand about an infinite series is that it is not a true sum. There
are properties of real number addition that allow us to extend the definition of to
sums like but not to “infinite sums.” For example, we can
add any finite number of 2’s together and get a real number, but if we add an infinite
number of 2’s together we do not get a real number at all. Sums do not behave that way.

What makes series so interesting is that sometimes (as in Example 2) the sequence of
partial sums, all of which are true sums, approaches a finite limit S:

In this case we say that the series converges to S, and it makes sense to define S as the
sum of the infinite series. In sigma notation,

If the limit of partial sums does not exist, then the series diverges and has no sum.

a
q

k=1
ak = lim

n: q
a
n

k=1
ak = S.

 lim
n: q

a
n

k=1
ak = lim

n: q

1a1 + a2 + Á
+  an2 = S

a + b + c + d + e + f,
a + b

EXAMPLE 3  Looking at Limits of Partial Sums
For each of the following series, find the first five terms in the sequence of partial
sums. Which of the series appear to converge?

(a)

(b)

(c)

SOLUTION

(a) The first five partial sums are 0.1, 0.11, 0.111, 0.1111, 0.11111 . These appear
to be approaching a limit of which would suggest that the series con-
verges to a sum of 1/9.

(b) The first five partial sums are 10, 30, 60, 100, 150 . These numbers increase
without bound and do not approach a limit. The series diverges and has no sum.

(c) The first five partial sums are 1, 0, 1, 0, 1 . These numbers oscillate and do not
approach a limit. The series diverges and has no sum.

Now try Exercise 23.

You might have been tempted to “pair off” the terms in Example 3c to get an infinite
summation of 0’s (and hence a sum of 0), but you would be applying a rule (namely the
associative property of addition) that works on finite sums but not, in general, on infi-
nite series. The sequence of partial sums does not have a limit, so any manipulation of
the series in Example 3c that appears to result in a sum is actually meaningless.

65
65

0.1 = 1/9,
65

1 - 1 + 1 - 1 + Á

10 + 20 + 30 + 40 + Á

0.1 + 0.01 + 0.001 + 0.0001 + Á
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Convergence of Geometric Series
Determining the convergence or divergence of infinite series is an important part of a
calculus course, in which series are used to represent functions. Most of the conver-
gence tests are well beyond the scope of this course, but we are in a position to settle
the issue completely for geometric series.

SECTION 9.5 Series 683

EXAMPLE 4  Summing Infinite Geometric Series
Determine whether the series converges. If it converges, give the sum.

(a) (b)

(c) (d)

SOLUTION

(a) Since the series converges. The first term is ,
so the sum is 

(b) Since the series converges. The first term is , so
the sum is 

(c) Since the series diverges.

(d) Since the series converges. The first term is 1, and so the sum is
Now try Exercise 25.a/11 - r2 = 1/11 - 1/22 = 2.

ƒr ƒ = ƒ1/2 ƒ 6 1,

ƒr ƒ = ƒp/2 ƒ 7 1,

a/11 - r2 = 1/11 - 1-4/522 = 5/9.
1-4/520 = 1ƒr ƒ = ƒ -4/5 ƒ 6 1,

a/11 - r2 = 3/11 - 0.752 = 12.
310.7520 = 3|r ƒ = |0.75| 6 1,

1 +

1

2
+

1

4
+

1

8
 + Áa

q

n=1
ap

2
bn

a
q

n=0
a -  

4

5
bn

a
q

k=1
310.752k-1

THEOREM Sum of an Infinite Geometric Series

The geometric series converges if and only if If it does
converge, the sum is a/11 - r2.

ƒ r ƒ 6 1.g
q    

k=1 a # r k-1

Proof

If , the series is which is unbounded and hence diverges. If
, the series is which diverges. (See Example 3c.) If

, then by the Sum of a Finite Geometric Sequence Theorem, the nth partial sum
of the series is The limit of the partial sums is

which converges if and only if is a finite number.

But is 0 when and unbounded when . Therefore, the sequence

of partial sums converges if and only if in which case the sum of the series is

.lim
n: q

3a11 - r n2/11 - r24 = a11 - 02/11 - r2 = a/11 - r2
ƒr ƒ 6 1,

ƒr ƒ 7 1ƒr ƒ 6 1limn:qr n
limn:qr nlimn:q3a11 - r n2/11 - r24,

gn
k=1 a # r k-1

= a11 - r n2/11 - r2.
r Z 1

a - a + a - a + Á ,r = -1
a + a + a + Á ,r = 1

EXAMPLE 5  Converting a Repeating Decimal 
to Fraction Form

Express 0.234234234 in fraction form.

SOLUTION We can write this number as a sum: 

This is a convergent infinite geometric series in which and 
The sum is

Now try Exercise 31.

a

1 - r
=

0.234

1 - 0.001
=

0.234

0.999
=

234

999
=

26

111
.

r = 0.001.a = 0.234

0.000000234 + Á .
0.234 + 0.000234 +

Á0.234 =
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QUICK REVIEW 9.5 (For help, see Section 9.4.)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, is arithmetic. Use the given information to
find .

1. 2.

3.

4. for n Ú 1a5 = 3; an+1 = an + 5

a3 = 6; a8 = 21

a1 = 3; a2 = 1a1 = 4; d = 2

a10

5an6

SECTION 9.5 EXERCISES

In Exercises 1–6, write each sum using summation notation, assuming
the suggested pattern continues.

1.

2.

3.

4.

5.

6.

In Exercises 7–12, find the sum of the arithmetic sequence.

7. , , 1, 5, 9, 13

8. , , 6, 13, 20, 27

9. 1, 2, 3, 4 80

10. 2, 4, 6, 8 70

11. 117, 110, 103 33

12. 111, 108, 105 27

In Exercises 13–16, find the sum of the geometric sequence.

13. 3, 6, 12 12,288

14. 5, 15, 45 98,415

15. 42, 7, 42

16.

In Exercises 17–22, find the sum of the first n terms of the sequence.
The sequence is either arithmetic or geometric.

17. 2, 5, 8 ; 

18. 14, 8, 2 ; 

19. 4, , 1, ; 

20. 6, , , ; 

21. , 11, ; 

22. , 24, ; n = 8, Á-288-2

n = 9, Á-121-1

n = 11, Á-  

3

4

3

2
-3

n = 12, Á-  

1

2
-2

n = 9, Á ,

n = 10, Á ,

42, -7, 
7

6
 , Á , 42 a -  

1

6
b9

a 1

6
b8

, Á ,
7

6

, Á ,

, Á ,

, Á ,

, Á ,

, Á ,

, Á ,

-1-8

-3-7

5 - 15 + 45 - 135 + Á

6 - 12 + 24 - 48 + Á

1 + 8 + 27 + Á
+  1n + 123

1 + 4 + 9 + Á
+  1n + 122

2 + 5 + 8 + 11 + Á
+  29

-7 - 1 + 5 + 11 + Á
+  53

23. Find the first six partial sums of the following infinite series. If
the sums have a finite limit, write “convergent.” If not, write
“divergent.”

(a)

(b)

24. Find the first six partial sums of the following infinite series. If
the sums have a finite limit, write “convergent.” If not, write
“divergent.”

(a)

(b)

In Exercises 25–30, determine whether the infinite geometric series
converges. If it does, find its sum.

25. 26.

27.

28.

29. 30.

In Exercises 31–34, express the rational number as a fraction of 
integers.

31. 7.14141414

32. 5.93939393

33.

34.

35. Savings Account The table below shows the December
balance in a fixed-rate compound savings account each year
from 1996 to 2000.

Á-12.876876876

Á-17.268268268

Á

Á

a
q

n=1
5 a 2

3
bn

a
q

j=1
3 a1

4
b j

1

48
+

1

16
+

3

16
+

9

16
 + Á

1

64
+

1

32
+

1

16
+

1

8
 + Á

4 +

4

3
+

4

9
+

4

27
 + Á6 + 3 +

3

2
+

3

4
 + Á

1 - 0.7 - 0.07 - 0.007 - 0.0007 - Á

-2 + 2 - 2 + 2 - 2 + Á

1 - 2 + 3 - 4 + 5 - 6 + Á

0.3 + 0.03 + 0.003 + 0.0003 + Á

In Exercises 5–8, is geometric. Use the given information to
find 

5. 6.

7. 8.

9. Find the sum of the first 5 terms of the sequence .

10. Find the sum of the first 5 terms of the sequence .52n - 16
5n26

a8 = 10; a12 = 40a7 = 5; r = -2

a4 = 1; a6 = 2a1 = 1; a2 = 2

a10.
5an6

(a) The balances form a geometric sequence. What is r?

(b) Write a formula for the balance in the account n years after
December 1996.

(c) Find the sum of the December balances from 1996 to
2006, inclusive.

Year 1996 1997 1998 1999 2000

Balance $20,000 $22,000 $24,200 $26,620 $29,282
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36. Savings Account The table below shows the December
balance in a simple interest savings account each year from
1996 to 2000.

(a) The balances form an arithmetic sequence. What is d?

(b) Write a formula for the balance in the account n years after
December 1996.

(c) Find the sum of the December balances from 1996 to
2006, inclusive.

37. Annuity Mr. O’Hara deposits $120 at the end of each
month into an account that pays 7% interest compounded
monthly. After 10 years, the balance in the account, 
in dollars, is

(a) This is a geometric series. What is the first term? What 
is r?

(b) Use the formula for the sum of a finite geometric sequence
to find the balance.

38. Annuity Ms. Argentieri deposits $100 at the end of each
month into an account that pays 8% interest compounded
monthly. After 10 years, the balance in the account, in 
dollars, is

(a) This is a geometric series. What is the first term? What 
is r?

(b) Use the formula for the sum of a finite geometric sequence
to find the balance.

39. Group Activity Follow the Bouncing Ball
When “superballs” sprang upon the scene in the 1960s, kids
across the United States were amazed that these hard rubber
balls could bounce to 90% of the height from which they were
dropped. If a superball is dropped from a height of 2 m, how
far does it travel until it stops bouncing? [Hint: The ball goes
down to the first bounce, then up and down thereafter.]

40. Writing to Learn The Trouble with Flubber
In the 1961 movie classic The Absent Minded Professor, Prof.
Ned Brainard discovers flubber (flying rubber). If a “super
duper ball” made of flubber is dropped, it rebounds to an 
ever greater height with each bounce. How far does it travel 
if allowed to keep bouncing?

+ 100a1 +

0.08

12
b119

.

100a1 +

0.08

12
b0

+ 100a1 +

0.08

12
b1

 + Á

+ 120a1 +

0.07

12
b119

.

120a1 +

0.07

12
b0

+ 120a1 +

0.07

12
b1

 + Á

Standardized Test Questions
41. True or False If all terms of a series are positive, the se-

ries sums to a positive number. Justify your answer.

42. True or False If both diverge, then

diverges. Justify your answer.

You should solve Exercises 43–46 without the use of a calculator.

43. Multiple Choice The series 

(A) Converges to 1/2. (B) Converges to 1/3.

(C) Converges to 2/3. (D) Converges to 3/2. (E) Diverges.

44. Multiple Choice If then 

(A) 0.2. (B) 0.25. (C) 0.4. (D) 0.8. (E) 4.0.

45. Multiple Choice The sum of an infinite geometric series
with first term 3 and second term 0.75 is

(A) 3.75. (B) 2.4. (C) 4. (D) 5. (E) 12.

46. Multiple Choice

(A) (B) (C) (D) 10 (E) Divergent

Explorations
47. Population Density The National Geographic Picture

Atlas of Our Fifty States (2001) groups the states into 10 re-
gions. The two largest groupings are the Heartland (Table 9.1)
and the Southeast (Table 9.2). Population and area data for the
two regions are given in the tables. The populations are official
2000 U.S. Census figures.

(a) What is the total population of each region?

(b) What is the total area of each region?

(c) What is the population density (in persons per square mile)
of each region?

(d) Writing to Learn For the two regions, compute the
population density of each state. What is the average of the
seven state population densities for each region? Explain
why these answers differ from those found in part (c).

3

2
-  

5

2
-6

a
q

n=0
4a -  

5

3
bn

=

x =a
q

n=1
xn

= 4,

3-n + Á

3-1
+ 3-2

+ 3-3 + Á
+

a
q

n=1
1an + bn2

a
q

n=1
an and a

q

n=1
bn
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Table 9.1 The Heartland

State Population Area 

Iowa 2,926,324 56,275
Kansas 2,688,418 82,277
Minnesota 4,919,479 84,402
Missouri 5,595,211 69,697
Nebraska 1,711,283 77,355
North Dakota 642,200 70,703
South Dakota 754,844 77,116

1mi22

Year 1996 1997 1998 1999 2000

Balance $18,000 $20,016 $22,032 $24,048 $26,064
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48. Finding a Pattern Write the finite series 
in summation notation.

Extending the Ideas
49. Fibonacci Sequence and Series Complete the 

following table, where is the nth term of the Fibonacci 
sequence and is the nth partial sum of the Fibonacci series.
Make a conjecture based on the numerical evidence in the table.

Sn = a
n

k=1
Fk

Sn

Fn

-1 + 2 + 7 + 14 + 23 + Á
+  62

50. Triangular Numbers Revisited Exercise 41 in
Section 9.2 introduced triangular numbers as numbers that
count objects arranged in triangular arrays:

1 3 6 10 15

In that exercise, you gave a geometric argument that the nth trian-
gular number was Prove that formula algebraically
using the Sum of a Finite Arithmetic Sequence Theorem.

51. Square Numbers and Triangular Numbers
Prove that the sum of two consecutive triangular numbers is a
square number; that is, prove

for all positive integers n 2. Use both a geometric and an 
algebraic approach.

52. Harmonic Series Graph the sequence of partial sums of
the harmonic series:

Overlay on it the graph of The resulting picture
should support the claim that

for all positive integers n. Make a table of values to further 
support this claim. Explain why the claim implies that the 
harmonic series must diverge.

1 +

1

2
+

1

3
+

1

4
 + Á

+  
1
n

Ú ln n,

ƒ1x2 = ln x.

1 +

1

2
+

1

3
+

1

4
 + Á

+  
1
n

 + Á

Ú

Tn-1 + Tn = n2

n1n + 12/2.
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Table 9.2 The Southeast

State Population Area 

Alabama 4,447,100 51,705
Arkansas 2,673,400 53,187
Florida 15,982,378 58,644
Georgia 8,186,453 58,910
Louisiana 4,468,976 47,751
Mississippi 2,844,658 47,689
S. Carolina 4,012,012 31,113

1mi22

n

1 1
2 1
3 2
4
5
6
7
8
9

Fn+2 - 1SnFn
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