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4.6 Graphs of Composite 
Trigonometric Functions

What you’ll learn about
• Combining Trigonometric 

and Algebraic Functions
• Sums and Differences of 

Sinusoids
• Damped Oscillation

... and why
Function composition extends
our ability to model periodic
phenomena like heartbeats 
and sound waves.

Combining Trigonometric and Algebraic 
Functions
A theme of this text has been “families of functions.” We have studied polynomial
functions, exponential functions, logarithmic functions, and rational functions (to
name a few), and in this chapter we have studied trigonometric functions. Now we
consider adding, multiplying, or composing trigonometric functions with functions
from these other families.

The notable property that distinguishes the trigonometric function from others we have
studied is periodicity. Example 1 shows that when a trigonometric function is com-
bined with a polynomial, the resulting function may or may not be periodic.

Exponent Notation
Example 3 introduces a shorthand notation for
powers of trigonometric functions: can
be written as . (Caution: This shorthand
notation will probably not be recognized by your
calculator.)

sinn u
1sin u2n

EXAMPLE 1  Combining the Sine Function with 
Graph each of the following functions for , adjusting the vertical
window as needed. Which of the functions appear to be periodic?

(a)

(b)

(c)

(d)

SOLUTION We show the graphs and their windows in Figure 4.56 on the next
page. Only the graph of exhibits periodic behavior in the interval

. (You can widen the window to see further graphical evidence that
this is indeed the only periodic function among the four.) Now try Exercise 5.
-2p … x … 2p

y = 1sin x22
y = sin 1x22
y = 1sin x22
y = x2 sin x

y = sin x + x2

-2p … x … 2p

x2

EXAMPLE 2  Verifying Periodicity Algebraically
Verify algebraically that is periodic and determine its period graphi-
cally.

SOLUTION We use the fact that the period of the basic sine function is that is,
for all x. It follows that

By periodicity of sine

So is also periodic, with some period that divides . The graph in Figure 4.56c
on the next page shows that the period is actually . Now try Exercise 9.p

2pƒ1x2
 = ƒ1x2
 = 1sin 1x222

 ƒ1x + 2p) = 1sin 1x + 2p222
sin 1x + 2p2 = sin 1x2 2p;

ƒ1x2 = 1sin x22
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Comparing the graphs of and over a single period (Figure 4.58),
we see that the two functions have the same zeros and extreme points, but otherwise the
graph of is closer to the x-axis than the graph of This is
because whenever y is between and 1. In fact, higher odd powers of sin x
yield graphs that are “sucked in” more and more, but always with the same zeros and
extreme points.

The absolute value of a periodic function is also a periodic function. We consider two
such functions in Example 4.

-1ƒy3
ƒ 6 ƒy ƒ

y = sin x.y = sin3 x

y = sin xy = sin3 x
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[–2�, 2�] by [–10, 20]

(a)

[–2�, 2�] by [–25, 25]

(b)

[–2�, 2�] by [–1.5, 1.5]

(c)

[–2�, 2�] by [–1.5, 1.5]

(d)

FIGURE 4.56 The graphs of the four
functions in Example 1. Only graph (c) 
exhibits periodic behavior over the interval

.-2p … x … 2p

EXAMPLE 3  Composing and 
Prove algebraically that is periodic and find the period graphically.
State the domain and range and sketch a graph showing two periods.

SOLUTION To prove that is periodic, we show that 
for all x.

Changing notation

By periodicity of sine

Changing notation

Thus is periodic with a period that divides . Graphing the function over the
interval (Figure 4.57), we see that the period must be .

Since both functions being composed have domain , the domain of ƒ is
also . Since cubing all numbers in the interval gives all numbers
in the interval , the range is (as supported by the graph).

Now try Exercise 13.
3-1, 143-1, 14 3-1, 141- q , q2 1- q , q2

2p… 2p-2p … x
2pƒ1x2

 = ƒ1x2
 = sin31x2
 = 1sin 1x223
 = 1sin 1x + 2p223

 ƒ1x + 2p2 = sin3 1x + 2p2
ƒ1x2 ƒ1x + 2p) =ƒ1x2 = sin3 x

ƒ1x2 = sin3 x

y = x3y = sin x

EXAMPLE 4  Analyzing Nonnegative Periodic Functions
Find the domain, range, and period of each of the following functions. Sketch a
graph showing four periods.

(a)

(b)

SOLUTION

(a) Whenever tan x is defined, so is Therefore, the domain of ƒ is the same as
the domain of the tangent function, that is, all real numbers except ,

. Because and the range of tan x is
the range of ƒ is . The period of ƒ, like that of is 

The graph of is shown in Figure 4.59.

(b) Whenever sin x is defined, so is Therefore, the domain of g is the same as the
domain of the sine function, that is, all real numbers. Because 
and the range of sin x is the range of g is 

The period of g is only half the period of , for reasons that are apparent
from viewing the graph. The negative sections of the sine curve below the x-axis are
reflected above the x-axis, where they become repetitions of the positive sections.
The graph of is shown in Figure 4.60 on the next page.

Now try Exercise 15.
y = g1x2

y = sin x

30, 14.3-1, 14 g1x2 = ƒsin x ƒ Ú 0
ƒsin x ƒ .

y = ƒ1x2 p.y = tan x,30, q21- q , q2, ƒ1x2 = ƒ tan x ƒ Ú 0n = 0, �1, Á

p/2 + np
ƒ tan x ƒ .

g1x2 = ƒsin x ƒ

ƒ1x2 = ƒ tan x ƒ
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When a sinusoid is added to a (nonconstant) linear function, the result is not periodic.
The graph repeats its shape at regular intervals, but the function takes on different val-
ues over those intervals. The graph will show a curve oscillating between two parallel
lines, as in Example 5.

SECTION 4.6 Graphs of Composite Trigonometric Functions 371

[0, 2∏] by [�1.5, 1.5]

FIGURE 4.58 The graph suggests
that .ƒsin3 x ƒ … ƒsin x ƒ

by [–1.5, 1.5]2 π ],[–2π

FIGURE 4.57 The graph of
. (Example 3)ƒ1x2 = sin3 x

by [–1.5, 5]2 π ],[–2π

FIGURE 4.59 has the
same period as . (Example 4a)y = tan x

ƒ1x2 = ƒ tan x ƒ

by [–1, 3]2 π ],[–2π

FIGURE 4.60 has half
the period of . (Example 4b)y = sin x

g1x2 = ƒsin x ƒ

by [–4, 4]2 π ],[–2π

FIGURE 4.61 The graph of
oscillates between the

lines and . 
Although the wave repeats its shape, it is
not periodic. (Example 5)

y = 0.5x -  1y = 0.5x + 1
ƒ1x2 = 0.5x + sin x

EXAMPLE 5  Adding a Sinusoid to a Linear Function
The graph of oscillates between two parallel lines (Figure
4.61). What are the equations of the two lines?

SOLUTION As sin x oscillates between and 1, oscillates between
and . Therefore, the two lines are and .

Graphing the two lines and in the same window provides graphical support. 
Of course, the graph should resemble Figure 4.61 if your lines are correct.

Now try Exercise 19.

ƒ1x2 y = 0.5x + 1y = 0.5x - 10.5x + 10.5x - 1
ƒ1x2-1

ƒ1x2 = 0.5x + sin x

Sums and Differences of Sinusoids
Section 4.4 introduced you to sinusoids, functions that can be written in the form

and therefore have the shape of a sine curve.

Sinusoids model a variety of physical and social phenomena—such as sound waves, volt-
age in alternating electrical current, the velocity of air flow during the human respiratory
cycle, and many others. Sometimes these phenomena interact in an additive fashion. For
example, if models the sound of one tuning fork and models the sound of a second
tuning fork, then models the sound when they are both struck simultaneously. So
we are interested in whether the sums and differences of sinusoids are again sinusoids.

y1 + y2

y2y1

y = a sin 1b1x - h22 + k

EXPLORATION 1 Investigating Sinusoids

Graph these functions, one at a time, in the viewing window by

. Which ones appear to be sinusoids?

What relationship between the sine and cosine functions ensures that their sum

or difference will again be a sinusoid? Check your guess on a graphing calculator

by constructing your own examples.

y = 3 cos 2x + 2 sin 7xy = cos a7x - 2

5
b + sin a7x

5
b

y = 2 sin 15x + 12 - 5 cos 5xy = 2 sin 3x - 4 cos 2x

y = 2 sin x - 3 cos xy = 3 sin x + 2 cos x

3-6, 64
3-2p, 2p4

6965_CH04_pp319-402.qxd  1/14/10  1:50 PM  Page 371



The rule turns out to be fairly simple: Sums and differences of sinusoids with the same
period are again sinusoids. We state this rule more explicitly as follows.

372 CHAPTER 4 Trigonometric Functions

Sums That Are Sinusoid Functions

If and , then

is a sinusoid with period 2p/ ƒb ƒ .

y1 + y2 = a1 sin 1b1x - h122 + a2 cos 1b1x - h222
y2 = a2 cos 1b1x - h222y1 = a1 sin 1b1x - h122

For the sum to be a sinusoid, the two sinusoids being added together must have the
same period, and the sum has the same period as both of them. Also, although the rule
is stated in terms of a sine function being added to a cosine function, the fact that every
cosine function is a translation of a sine function (and vice versa) makes the rule
equally applicable to the sum of two sine functions or the sum of two cosine functions.
If they have the same period, their sum is a sinusoid.

EXAMPLE 6  Identifying a Sinusoid
Determine whether each of the following functions is or is not a sinusoid.

(a)

(b)

(c)

(d)

SOLUTION

(a) Yes, since both functions in the sum have period .

(b) No, since cos 5x has period and sin 3x has period .

(c) No, since 2 cos 3x has period and 3 cos 2x has period .

(d) Yes, since all three functions in the sum have period . (The first two sum
to a sinusoid with the same period as the third, so adding the third function still
yields a sinusoid.) Now try Exercise 25.

14p/3

p2p/3

2p/32p/5

2p

ƒ1x2 = a cosa3x

7
b - b cosa3x

7
b + c sina3x

7
b

ƒ1x2 = 2 cos 3x - 3 cos 2x

ƒ1x2 = cos 5x + sin 3x

ƒ1x2 = 5 cos x + 3 sin x

EXAMPLE 7  Expressing the Sum of Sinusoids as a Sinusoid
Let . From the discussion above, you should conclude that

is a sinusoid.

(a) Find the period of ƒ.

(b) Estimate the amplitude and phase shift graphically (to the nearest hundredth).

(c) Give a sinusoid that approximates .

SOLUTION

(a) The period of ƒ is the same as the period of sin x and cos x, namely .

Solve Graphically

(b) We will learn an algebraic way to find the amplitude and phase shift in the next
chapter, but for now we will find this information graphically. Figure 4.62 sug-
gests that ƒ is indeed a sinusoid. That is, for some a and b,

2 sin x + 5 cos x = a sin 1x - h2.

2p

ƒ1x2a sin 1b1x - h22

ƒ1x2ƒ1x2 = 2 sin x + 5 cos x

by [–10, 10]2 π ],[–2π

–1.19

5.39

FIGURE 4.62 The sum of two sinusoids:
. (Example 7)ƒ1x2 = 2 sin x + 5 cos x
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The sum of two sinusoids with different periods, while not a sinusoid, will often be a
periodic function. Finding the period of a sum of periodic functions can be tricky. Here
is a useful fact to keep in mind. If ƒ is periodic, and if for all x in the
domain of ƒ, then the period of ƒ divides s exactly. In other words, s is either the period
or a multiple of the period.

ƒ1x + s2 = ƒ1x2

SECTION 4.6 Graphs of Composite Trigonometric Functions 373

The maximum value, rounded to the nearest hundredth, is 5.39, so the amplitude of 
ƒ is about 5.39. The x-intercept closest to , rounded to the nearest hundredth, 
is , so the phase shift of the sine function is about . We conclude that

(c) We support our answer graphically by showing that the graphs of 
and are virtually identical (Figure 4.63).

Now try Exercise 29.
y = 5.39 sin 1x + 1.192cos x

y = 2 sin x + 5

ƒ1x2 = a sin 1x + h2 L 5.39 sin 1x + 1.192.
-1.19-1.19

x = 0

by [–6, 6]2 π ],[–2π

FIGURE 4.63 The graphs of
and

appear to be 
identical. (Example 7)
y = 5.39 sin 1x + 1.192
y = 2 sin x + 5 cos x

EXAMPLE 8  Showing a Function Is Periodic 
but Not a Sinusoid

Show that is periodic but not a sinusoid. Graph one period.

SOLUTION Since sin 2x and cos 3x have different periods, the sum is not a sinu-
soid. Next we show that is a candidate for the period of ƒ, that is,

for all x.

This means either that is the period of ƒ or that the period is an exact divisor of
. Figure 4.64 suggests that the period is not smaller than , so it must be .

The graph shows that indeed ƒ is not a sinusoid. Now try Exercise 35.

2p2p2p
2p

 = ƒ1x2
 = sin 2x + cos 3x

 = sin 12x + 4p2 + cos 13x + 6p2
 ƒ1x + 2p2 = sin 121x + 2p22 + cos 131x + 2p22

ƒ1x + 2p2 = ƒ1x2 2p

ƒ1x2 = sin 2x + cos 3x

by [–2, 2]2 π ][0,

FIGURE 4.64 One period of
. (Example 8)ƒ1x2 = sin 2x + cos 3x

[–2�, 2�] by [–40, 40]

FIGURE 4.65 The graph of
shows damped

oscillation.
y = 1x2

+ 52 cos 6x

Damped Oscillation
Because the values of and cos bt oscillate between and 1, something interesting
happens when either of these functions is multiplied by another function. For example,
consider the function , graphed in Figure 4.65. The (blue) graph
of the function oscillates between the (red) graphs of and .
The “squeezing” effect that can be seen near the origin is called damping.

y = -1x2
+ 52y = x2

+ 5
y = 1x2

+ 52 cos 6x

-1sin bt

Damped Oscillation

The graph of cos bx (or oscillates between the
graphs of and . When this reduces the amplitude of the
wave, it is called damped oscillation. The factor is called the damping
factor.

ƒ1x2y = -ƒ1x2y = ƒ1x2 y = ƒ1x2 sin bx2y = ƒ1x2
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EXAMPLE 9  Identifying Damped Oscillation
For each of the following functions, determine if the graph shows damped oscilla-
tion. If it does, identify the damping factor and tell where the damping occurs.

(a)

(b)

(c)

SOLUTION The graphs are shown in Figure 4.66.

(a) This is damped oscillation. The damping factor is and the damping occurs as
.

(b) This wave has a constant amplitude of 3. No damping occurs.

(c) This is damped oscillation. The damping factor is . The damping occurs as
. Now try Exercise 43.x : 0

-2x

x : q

2-x

ƒ1x2 = -2x cos 2x

ƒ1x2 = 3 cos 2x

ƒ1x2 = 2-x sin 4x

[–�, �] by [–5, 5]

(a)

[–�, �] by [–5, 5]

(b)

[–2�, 2�] by [–12, 12]

(c)

FIGURE 4.66 The graphs of functions
(a), (b), and (c) in Example 9. The wave in
graph (b) does not exhibit damped oscillation.

EXAMPLE 10  A Damped Oscillating Spring
Dr. Sanchez’s physics class collected data for an air table glider that oscillates 
between two springs. The class determined from the data that the equation

modeled the displacement y of the spring from its original position as a function of
time t.

(a) Identify the damping factor and tell where the damping occurs.

(b) Approximately how long does it take for the spring to be damped so that

SOLUTION The graph is shown in Figure 4.67.

-0.1 … y … 0.1?

y = 0.22e-0.065t cos 2.4t

0.25

–0.25

y

t

Time

D
is

pl
ac

em
en

t

25

Dr. Sanchez’s Lab

FIGURE 4.67 Damped oscillation in the physics lab. (Example 10)

(a) The damping factor is . The damping occurs as 

(b) We want to find how soon the curve falls entirely be-
tween the lines and . By zooming in on the region indicated in
Figure 4.68a and using grapher methods, we find that it takes approximately
11.86 seconds until the graph of lies entirely between

and (Figure 4.68b). Now try Exercise 71.y = 0.1y = -0.1
y = 0.22e-0.065t cos 2.4t

y = 0.1y = -0.1
y = 0.22e-0.065t cos 2.4t

t : q .0.22e-0.065t
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[8, 25] by [–0.15, 0.15]

(a)

Y=–0.1

Y=0.1

Zoom in here
[11, 12.4] by [–0.11, –0.09]

(b)

X=11.85897   Y=–.1
Intersection

FIGURE 4.68 The damped oscillation in Example 10 eventually gets to be less
than 0.1 in either direction.

QUICK REVIEW 4.6 (For help, go to Sections 1.2 and 1.4.)

SECTION 4.6 EXERCISES

In Exercises 1–8, graph the function for , adjusting the
vertical window as needed. State whether or not the function appears to
be periodic.

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–12, verify algebraically that the function is periodic and
determine its period graphically. Sketch a graph showing two periods.

9. 10.

11. 12.

In Exercises 13–18, state the domain and range of the function and
sketch a graph showing four periods.

13. 14.

15. 16.

17. 18.

The graph of each function in Exercises 19–22 oscillates between two
parallel lines, as in Example 5. Find the equations of the two lines and
graph the lines and the function in the same viewing window.

19. 20.

21. 22. y = 1 + x + cos 3xy = 2 - 0.3x + cos x

y = 1 - 0.5x + cos 2xy = 2x + cos x

y = -sin2 xy = - tan2 x

y = cos ƒx ƒy = ƒcot x ƒ

y = ƒcos x ƒy = cos2 x

ƒ1x2 = ƒcos3 x ƒƒ1x2 = 2cos2 x

ƒ1x2 = cos3 xƒ1x2 = cos2 x

ƒ1x2 = 12 cos x - 422ƒ1x2 = 1sin x + 123
ƒ1x2 = x2 cos xƒ1x2 = x cos x

ƒ1x2 = x2
- 2 cos xƒ1x2 = x2

+ 2 sin x

ƒ1x2 = 11.5 cos x22ƒ1x2 = 1sin x22

-2p … x … 2p In Exercises 23–28, determine whether is a sinusoid.

23.

24.

25.

26.

27.

28.

In Exercises 29–34, find a, b, and h so that .

29.

30.

31.

32.

33.

34.

In Exercises 35–38, the function is periodic but not a sinusoid. Find the
period graphically and sketch a graph showing one period.

35.

36.

37.

38. y = sin 2x + sin 5x

y = cos 3x - 4 sin 2x

y = 2 sin 2x + cos 3x

y = 2 cos x + cos 3x

ƒ1x2 = 3 sin 2x - cos 2x

ƒ1x2 = 2 cos x + sin x

ƒ1x2 = cos 2px + 3 sin 2px

ƒ1x2 = sin px - 2 cos px

ƒ1x2 = cos 3x + 2 sin 3x

ƒ1x2 = 2 sin 2x - 3 cos 2x

ƒ1x2 L a sin 1b1x - h22
ƒ1x2 = p sin 3x - 4p sin 2x

ƒ1x2 = 3 sin 2x - 5 cos x

ƒ1x2 = 2 sin x - tan x

ƒ1x2 = 2 cos px + sin px

ƒ1x2 = 4 cos x + 2 sin x

ƒ1x2 = sin x - 3 cos x

ƒ1x2

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–6, state the domain and range of the function.

1. 2.

3. 4.

5. 6. ƒ1x2 = ƒx + 2 ƒ + 1ƒ1x2 = ƒx ƒ - 2

ƒ1x2 = 1xƒ1x2 = 1x - 1

ƒ1x2 = -2 cos 3xƒ1x2 = 3 sin 2x

In Exercises 7 and 8, describe the end behavior of the function, that
is, the behavior as .

7. 8.

In Exercises 9 and 10, form the compositions and . State
the domain of each function.

9. and 

10. and g1x2 = cos xƒ1x2 = x2

g1x2 = 1xƒ1x2 = x2
- 4

g � fƒ � g

ƒ1x2 = -0.215-0.1x2ƒ1x2 = 5e-2x

ƒx ƒ : q
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In Exercises 39–42, match the function with its graph.

376 CHAPTER 4 Trigonometric Functions

67. 68.

69. 70.

71. Oscillating Spring The oscillations of a spring subject
to friction are modeled by the equation 

(a) Graph y and its two damping curves in the same viewing
window for .

(b) Approximately how long does it take for the spring to be
damped so that ?

72. Predicting Economic Growth
The business manager of a small manu-
facturing company finds that she can
model the company’s annual growth as
roughly exponential, but with cyclical
fluctuations. She uses the function

to 
estimate sales (in millions of dollars), 
t years after 2005.

(a) What are the company’s sales in 2005?

(b) What is the approximate annual growth rate?

(c) What does the model predict for sales in 2013?

(d) How many years are in each economic cycle for this com-
pany?

73. Writing to Learn Example 3 shows that the function
is periodic. Explain whether you think that 

is periodic and why.

74. Writing to Learn Example 4 shows that is
periodic. Write a convincing argument that is not a
periodic function.

In Exercises 75 and 76, select the one correct inequality, (a) or (b).
Give a convincing argument.

75. (a) for all x.

(b) for all x.

76. (a) for all x.

(b) for all x.

In Exercises 77–80, match the function with its graph. In each case
state the viewing window.

- ƒx ƒ … x sin x … ƒx ƒ

-x … x sin x … x

x - sin x … x + sin x

x - 1 … x + sin x … x + 1

y = tan ƒx ƒ

y = ƒ tan x ƒ

y = sin x3y = sin3 x

S1t2 = 7511.042t + 4 sin 1pt/32

-0.2 … y … 0.2

0 … t … 12

y = 0.43e-0.55t cos 1.8t.

ƒ1x2 = 1cos xƒ1x2 = 2 ƒsin x ƒ

ƒ1x2 = sin ƒx ƒƒ1x2 = 1sin x

(a)

by [–6, 6]2 π ],[–2π

(b)

by [–6, 6]2 π ],[–2π

(c)

by [–6, 6]2 π ],[–2π

(d)

by [–6, 6]2 π ],[–2π

39.

40.

41.

42.

In Exercises 43–48, tell whether the function exhibits damped oscilla-
tion. If so, identify the damping factor and tell whether the damping 
occurs as or as .

43. 44.

45. 46.

47. 48.

In Exercises 49–52, graph both ƒ and plus or minus its damping factor
in the same viewing window. Describe the behavior of the function ƒ
for . What is the end behavior of ƒ?

49. 50.

51. 52.

In Exercises 53–56, find the period and graph the function over two 
periods.

53.

54.

55.

56.

In Exercises 57–62, graph ƒ over the interval . Determine
whether the function is periodic and, if it is, state the period.

57. 58.

59. 60.

61. 62.

In Exercises 63–70, find the domain and range of the function.

63. 64.

65. 66. ƒ1x2 = -2x + ƒ3 sin x ƒƒ1x2 = ƒx ƒ + cos x

ƒ1x2 = 2 - x + sin xƒ1x2 = 2x + cos x

ƒ1x2 = 3 - x + sin 3xƒ1x2 =

1

2
 x + cos 2x

ƒ1x2 = x + sin 2xƒ1x2 = x - cos x

ƒ1x2 = 3x + 4 sin 2xƒ1x2 = ` sin 
1

2
 x ` + 2

3-4p, 4p4
y = 3 cos 12x - 12 - 4 sin 13x - 22
y = 2 sin 13x + 12 - cos 15x - 12
y = 4 cos 2x - 2 cos 13x - 12
y = sin 3x + 2 cos 2x

ƒ1x2 = e-x cos 3xƒ1x2 = x -1 sin 3x

ƒ1x2 = 2-x sin 4xƒ1x2 = 1.2-x cos 2x

x 7 0

ƒ1x2 = a2

3
bx

 sina2x

3
bƒ1x2 = x3 sin 5x

ƒ1x2 = p2 cos pxƒ1x2 = 15 cos 1.2x

ƒ1x2 = x sin 4xƒ1x2 = e-x sin 3x

x : qx : 0

y = sin x - 4 sin 2x

y = 3 cos 2x + cos 3x

y = 2 sin 5x - 3 cos 2x

y = 2 cos x - 3 sin 2x

(a) (b)

(c) (d)

77.

78. y = cos x - sin 2x - cos 3x + sin 4x - cos 5x

y = cos x - sin 2x - cos 3x + sin 4x
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79.

80.

Standardized Test Questions
81. True or False The function is periodic.

Justify your answer.

82. True or False The sum of two sinusoids is a sinusoid.
Justify your answer.

You may use a graphing calculator when answering these questions.

83. Multiple Choice What is the period of the function
?

(A) (B) (C)

(D) (E) None; the function is not periodic.

84. Multiple Choice The function is

(A) discontinuous. (B) bounded. (C) even.

(D) one-to-one. (E) periodic.

85. Multiple Choice The function is

(A) discontinuous. (B) bounded. (C) even.

(D) odd. (E) periodic.

86. Multiple Choice Which of the following functions is not
a sinusoid?

(A) (B)

(C) (D)

(E)

Explorations
87. Group Activity Inaccurate or Misleading

Graphs

(a) Set and . Move the cursor along
the x-axis. What is the distance between one pixel and the
next (to the nearest hundredth)?

(b) What is the period of ? Consider that the
period is the length of one full cycle of the graph. Approxi-
mately how many cycles should there be between two ad-
jacent pixels? Can your grapher produce an accurate graph
of this function between 0 and ?2p

ƒ1x2 = sin 250x

Xmax = 2pXmin = 0

sin 13x + 32 + cos 13x + 22
3 sin 13x2 + 2 cos 12x23 sin 12x2 + 2 cos 12x2
3 sin 12x22 cos 12x2

ƒ1x2 = x + sin x

ƒ1x2 = x sin x

3p

2ppp/2

ƒ1x2 = ƒsin x ƒ

ƒ1x2 = sin ƒx ƒ

y = sin x - cos x - cos 2x - cos 3x

y = sin x + cos x - cos 2x - sin 3x
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88. Group Activity Length of Days The graph shows
the number of hours of daylight in Boston as a function of the
day of the year, from September 21, 1983, to December 15,
1984. Key points are labeled and other critical information is
provided. Write a formula for the sinusoidal function and
check it by graphing.
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Extending the Ideas
In Exercises 89–96, first try to predict what the graph will look like
(without too much effort, that is, just for fun). Then graph the function
in one or more viewing windows to determine the main features of the
graph, and draw a summary sketch. Where applicable, name the period,
amplitude, domain, range, asymptotes, and zeros.

89. 90.

91. 92.

93. 94.

95. 96. g1x2 = x2 sin 
1
x

ƒ1x2 = x sin 
1
x

g1x2 =

sin x

x2
ƒ1x2 =

sin x
x

g1x2 = sin px + 24 - x2ƒ1x2 = 1x sin x

g1x2 = etan xƒ1x2 = cos ex
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