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3.4 Properties of Logarithmic
Functions

What you’ll learn about
• Properties of Logarithms
• Change of Base
• Graphs of Logarithmic 

Functions with Base b
• Re-expressing Data

... and why
The applications of logarithms
are based on their many spe-
cial properties, so learn them
well.

Properties of Logarithms
Logarithms have special algebraic traits that historically made them indispensable for
calculations and that still make them valuable in many areas of application and mod-
eling. In Section 3.3 we learned about the inverse relationship between exponents and
logarithms and how to apply some basic properties of logarithms. We now delve
deeper into the nature of logarithms to prepare for equation solving and modeling.

Properties of Exponents
Let b, x, and y be real numbers with .

1.

2.

3. 1bx2y = bxy

bx

by = bx-y

bx # by
= bx+y

b 7 0

The properties of exponents in the margin are the basis for these three properties of log-
arithms. For instance, the first exponent property listed in the margin is used to verify
the product rule.

EXAMPLE 1  Proving the Product Rule for Logarithms
Prove .

SOLUTION Let and . The corresponding exponential state-
ments are and . Therefore,

First property of exponents

Change to logarithmic form.

Use the definitions of x and y.

Now try Exercise 37.

 = logb R + logb S

 logb 1RS2 = x + y

 = bx+y

 RS = bx # by

by
= Sbx

= R
y = logb Sx = logb R

logb (RS2 = logb R + logb S

EXPLORATION 1 Exploring the Arithmetic of Logarithms

Use the 5-decimal-place approximations shown in Figure 3.26 to support the

properties of logarithms numerically.

1. Product

2. Quotient

3. Power

(continued)

log 23
= 3 log 2

log a8

2
b = log 8 - log 2

log 12 # 42 = log 2 + log 4

log(2)

log(4)

log(8)

.30103

.60206

.90309

FIGURE 3.26 An arithmetic pattern of
logarithms. (Exploration 1)

Properties of Logarithms

Let b, R, and S be positive real numbers with , and c any real number.

• Product rule:

• Quotient rule:

• Power rule: logb Rc
= c logb R

logb 
R

S
= logb R - logb S

logb 1RS2 = logb R + logb S

b Z 1
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When we solve equations algebraically that involve logarithms, we often have to
rewrite expressions using properties of logarithms. Sometimes we need to expand as far
as possible, and other times we condense as much as possible. The next three examples
illustrate how properties of logarithms can be used to change the form of expressions
involving logarithms.
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Now evaluate the common logs of other positive integers using the information

given in Figure 3.26 and without using your calculator.

4. Use the fact that to evaluate log 5.

5. Use the fact that 16, 32, and 64 are powers of 2 to evaluate log 16, log 32, and
log 64.

6. Evaluate log 25, log 40, and log 50.

List all of the positive integers less than 100 whose common logs can be evalu-

ated knowing only log 2 and the properties of logarithms and without using a

calculator.

5 = 10/2

EXAMPLE 2  Expanding the Logarithm of a Product
Assuming x and y are positive, use properties of logarithms to write as a
sum of logarithms or multiples of logarithms.

SOLUTION Product rule

Power rule

Now try Exercise 1.

 =  3 log 2 + log x + 4 log y

8 = 23 =  log 23
+ log x + log y4

 log 18xy42 = log 8 +  log x + log y4

log 18xy42

EXAMPLE 3  Expanding the Logarithm of a Quotient
Assuming x is positive, use properties of logarithms to write ln as a
sum or difference of logarithms or multiples of logarithms.

SOLUTION

Quotient rule

Power rule

Now try Exercise 9.

 =

1

2
 ln 1x2

+ 52 - ln x

 = ln 1x2
+ 521/2

- ln x

 ln 
2x2

+ 5
x

= ln 
1x2

+ 521/2

x

12x2
+ 5/x2

EXAMPLE 4  Condensing a Logarithmic Expression
Assuming x and y are positive, write ln as a single logarithm.

SOLUTION Power rule

Quotient rule

Now try Exercise 13.

 = ln 
x3

y2

 = ln 
x5

x2 y2

 = ln x5
- ln 1x2y22

 ln x5
- 2 ln 1xy2 = ln x5

- ln 1xy22
ln 1xy2x5

- 2
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As we have seen, logarithms have some surprising properties. It is easy to overgeneral-
ize and fall into misconceptions about logarithms. Exploration 2 should help you dis-
cern what is true and false about logarithmic relationships.
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EXPLORATION 2 Discovering Relationships and Nonrelationships

Of the eight relationships suggested here, four are true and four are false (using

values of x within the domains of both sides of the equations). Thinking about

the properties of logarithms, make a prediction about the truth of each state-

ment. Then test each with some specific numerical values for x. Finally, com-

pare the graphs of the two sides of the equation.

1. 2.

3. 4.

5. 6.

7. 8.

Which four are true, and which four are false?

log ƒ4x ƒ = log 4 + log ƒx ƒlog5 x2
= 1log5 x21log5 x2

log4 x3
= 3 log4 xlog 

x

4
=

log x

log 4

ln 
x

5
= ln x - ln 5log2 15x2 = log2 5 + log2 x

log3 17x2 = 7 log3 xln 1x + 22 = ln x + ln 2

Change of Base
When working with a logarithmic expression with an undesirable base, it is possible to
change the expression into a quotient of logarithms with a different base. For example,

it is hard to evaluate because 7 is not a simple power of 4 and there is no
key on a calculator or grapher.

We can work around this problem with some algebraic trickery. First let .
Then

Switch to exponential form.

Apply ln.

Power rule

Divide by ln 4.

Using a grapher (Figure 3.27), we see that

We generalize this useful trickery as the change-of-base formula:

log4 7 =

ln 7

ln 4
= 1.4036 Á

 y =

ln 7

ln 4

 yln 4 = ln 7

 ln 4 y
= ln 7

 4y
= 7

y = log4 7

log4log4 7

ln(7)/ln(4)

4^Ans
1.403677461

7

FIGURE 3.27 Evaluating and checking
.log4 7

Change-of-Base Formula for Logarithms

For positive real numbers a, b, and x with and ,

logb x =

loga x

loga b
 .

b Z 1a Z 1
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Calculators and graphers generally have two logarithm keys— and —which
correspond to the bases 10 and e, respectively. So we often use the change-of-base for-
mula in one of the following two forms:

or

These two forms are useful in evaluating logarithms and graphing logarithmic functions.

logb x =

ln x

ln b
logb x =

log x

log b

LNLOG
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EXAMPLE 5  Evaluating Logarithms by Changing the Base

(a)

(b)

(c) Now try Exercise 23.log1/2 2 =

ln 2

ln 11/22 =

ln 2

ln 1 - ln 2
=

ln 2

- ln 2
= -1

log6 10 =

log 10

log 6
=

1

log 6
= 1.285 Á L 1.29

log3 16 =

ln 16

ln 3
= 2.523 Á L 2.52

Graphs of Logarithmic Functions with Base b
Using the change-of-base formula we can rewrite any logarithmic function

as

Therefore, every logarithmic function is a constant multiple of the natural logarithmic
function . If the base is , the graph of is a vertical
stretch or shrink of the graph of by the factor . If , a re-
flection across the x-axis is required as well.

0 6 b 6 11/ln bƒ1x2 = ln x
g1x2 = logb xb 7 1ƒ1x2 = ln x

g1x2 =

ln x

ln b
=

1

ln b
 ln x.

g1x2 = logb x

EXAMPLE 6  Graphing Logarithmic Functions
Describe how to transform the graph of into the graph of the given func-
tion. Sketch the graph by hand and support your answer with a grapher.

(a) (b)
SOLUTION

(a) Because , its graph is obtained by vertically shrinking
the graph of by a factor of . See Figure 3.28a.

(b) . We can obtain 

the graph of h from the graph of by applying, in either order, a re-
flection across the x-axis and a vertical shrink by a factor of . See
Figure 3.28b. Now try Exercise 39.

1/ln 4 L 0.72
ƒ1x2 = ln x

h1x2 = log1/4 x =

ln x

ln 1/4
=

ln x

ln 1 - ln 4
=

ln x

- ln 4
= -  

1

ln 4
 ln x

1/ln 5 L 0.62ƒ1x2 = ln x
g1x2 = log5 x = ln x/ ln 5

h1x2 = log1/4 xg1x2 = log5 x

ƒ1x2 = ln x

[–3, 6] by [–3, 3]

(a)

[–3, 6] by [–3, 3]

(b)

FIGURE 3.28 Transforming 
to obtain (a) x and 
(b) . (Example 6)h1x2 = log1/4 x

g1x2 = log5

ƒ1x2 = ln x

We can generalize Example 6b in the following way: If , then and

So when given a function like , with a base between 0 and 1, we can im-
mediately rewrite it as . Because we can so readily change the base of
logarithms with bases between 0 and 1, such logarithms are rarely encountered or used.
Instead, we work with logarithms that have bases , which behave much like nat-
ural and common logarithms, as we now summarize.

b 7 1

h1x2 = - log4 x
h1x2 = log1/4 x

log1/b x = - logb x.

0 6 1/b 6 1b 7 1
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Re-expressing Data
When seeking a model for a set of data, it is often helpful to transform the data by ap-
plying a function to one or both of the variables in the data set. We did this already
when we treated the years 1900–2000 as 0–100. Such a transformation of a data set is a
re-expression of the data.

Recall from Section 2.2 that Kepler’s Third Law states that the square of the orbit 
period T for each planet is proportional to the cube of its average distance a from the
Sun. If we re-express the Kepler planetary data in Table 2.10 using Earth-based units,
the constant of proportion becomes 1 and the “is proportional to” in Kepler’s Third
Law becomes “equals.” We can do this by dividing the “average distance” column by
149.6 Gm/AU and the “period of orbit” column by 365.2 days/yr. The re-expressed
data are shown in Table 3.20.
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Domain: 
Range: All reals
Continuous
Increasing on its domain
No symmetry: neither even nor odd
Not bounded above or below
No local extrema
No horizontal asymptotes
Vertical asymptote: 
End behavior: lim

x: q

 logb x = q

x = 0

10, q2

FIGURE 3.29 .ƒ1x2 = logb x, b 7 1

y

x

(b, 1)

(1, 0)

Logarithmic Functions , with b>1ƒ1x2 � logb x

Astronomically Speaking
An astronomical unit (AU) is the average dis-
tance between the Earth and the Sun, about
149.6 million kilometers (149.6 Gm).

[–1, 10] by [–5, 30]

(a)

[–100, 1500] by [–1000, 12 000]

(b)

FIGURE 3.30 Scatter plots of the plane-
tary data from (a) Table 3.20 and
(b) Table 2.10.

Source: Re-expression of data from: Shupe, et al., National Geographic Atlas
of the World (rev. 6th ed.). Washington, DC: National Geographic Society,
1992, plate 116.

Table 3.20 Average Distances and Orbit Periods
for the Six Innermost Planets

Planet Average Distance from Period of Orbit (yr)
Sun (AU)

Mercury 0.3870 0.2410
Venus 0.7233 0.6161
Earth 1.000 1.000
Mars 1.523 1.881
Jupiter 5.203 11.86
Saturn 9.539 29.46

Notice that the pattern in the scatter plot of these re-expressed data, shown in Figure
3.30a, is essentially the same as the pattern in the plot of the original data, shown in Figure
3.30b. What we have done is to make the numerical values of the data more convenient
and to guarantee that our plot contains the ordered pair (1, 1) for Earth, which could 
potentially simplify our model. What we have not done and still wish to do is to clarify
the relationship between the variables a (distance from the Sun) and T (orbit period).

6965_CH03_pp251-318.qxd  1/14/10  1:11 PM  Page 287



Logarithms can be used to re-express data and help us clarify relationships and uncover
hidden patterns. For the planetary data, if we plot pairs instead of 
pairs, the pattern is much clearer. In Example 7, we carry out this re-expression of the
data and then use an algebraic tour de force to obtain Kepler’s Third Law.

1a, T21ln a, ln T2

288 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

EXAMPLE 7  Establishing Kepler’s Third Law Using 
Logarithmic Re-expression

Re-express the data pairs in Table 3.20 as pairs. Find a linear re-
gression model for the pairs. Rewrite the linear regression in terms of 
a and T, and rewrite the equation in a form with no logs or fractional exponents.

SOLUTION

Model

We use grapher list operations to obtain the pairs (see Figure 3.31a). We
make a scatter plot of the re-expressed data in Figure 3.31b. The pairs 
appear to lie along a straight line.

1ln a, ln T21ln a, ln T2

1ln a, ln T2 1ln a, ln T21a, T2

L2 L3

L4 = ln (L2)

.241

.6161
1
1.881
11.86
29.46
– – – – – –

–.9493
–.3239
0
.42068
1.6492
2.2554
– – – – – –

–1.423
–.4843
0
.6318
2.4732
3.383
– – – – – –

L4

(a)

[–2, 3] by [–3, 5]

(b)

[–2, 3] by [–3, 5]

(c)

FIGURE 3.31 Scatter plot and graphs for Example 7.

We let and . Then using linear regression, we obtain the following
model:

Figure 3.31c shows the scatter plot for the pairs together with a
graph of . You can see that the line fits the re-expressed data remarkably well.

Remodel

Returning to the original variables a and T, we obtain:

Divide by ln a.

Change of base

Switch to exponential form.

Square both sides.

Interpret

This is Kepler’s Third Law! Now try Exercise 65.

 T2
= a3

 T = a3/2

 loga T =

3

2

 
ln T

ln a
= 1.5

y = 1.5x ln T = 1.5 # ln a

y = 1.5x
1x, y2 = 1ln a, ln T2

y = 1.49950x + 0.00070 L 1.5x.

x = ln ay = ln T
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QUICK REVIEW 3.4 (For help, go to Sections A.1 and 3.3.)

SECTION 3.4 EXERCISES

In Exercises 1–12, assuming x and y are positive, use properties of log-
arithms to write the expression as a sum or difference of logarithms or
multiples of logarithms.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

In Exercises 13–22, assuming x, y, and z are positive, use properties of
logarithms to write the expression as a single logarithm.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

In Exercises 23–28, use the change-of-base formula and your calculator
to evaluate the logarithm.

23. 24.

25. 26.

27. 28. log0.2 29log0.5 12

log12 259log8 175

log5 19log2 7

3 ln 1x3y2 + 2 ln 1yz22
4 log 1xy2 - 3 log 1yz2
4 log y - log z

2 ln x + 3 ln y

1

5
 log z

1

3
 log x

ln x - ln y

ln y - ln 3

log x + log 5

log x + log y

ln 
23 x

23 y
log B4   

x

y

log 1000x4ln 
x2

y3

log xy3log x3y2

log2 x -2log2 y5

log 
2
y

log 
3
x

ln 9yln 8x

In Exercises 29–32, write the expression using only natural logarithms.

29. 30.

31.

32.

In Exercises 33–36, write the expression using only common 
logarithms.

33. 34.

35.

36.

37. Prove the quotient rule of logarithms.

38. Prove the power rule of logarithms.

In Exercises 39–42, describe how to transform the graph of
into the graph of the given function. Sketch the graph by

hand and support with a grapher.

39. 40.

41. 42.

In Exercises 43–46, match the function with its graph. Identify the win-
dow dimensions, Xscl, and Yscl of the graph.

43. 44.

45. 46. ƒ1x2 = log0.7 13 - x2ƒ1x2 = log0.5 1x - 22
ƒ1x2 = log6 1x - 32ƒ1x2 = log4 12 - x2

ƒ1x2 = log1/5 xƒ1x2 = log1/3 x

ƒ1x2 = log7 xƒ1x2 = log4 x

g1x2 =  ln x

log1/3 1x - y2
log1/2 1x + y2

log4 xlog2 x

log5 1c - d2
log2 1a + b2

log7 xlog3 x

(a) (b)

(c) (d)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, evaluate the expression without using a calculator.

1.

2.

3.

4. log 10-3

ln e-2

ln e3

log 102

In Exercises 5–10, simplify the expression.

5. 6.

7. 8.

9. 10.
1x -2y32-2

1x3y-22-3

1u2v-421/2

127u6v-621/3

1x -8y1223/41x6y-221/2

u-3v7

u-2v2

x5 y-2

x2 y-4
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In Exercises 47–50, graph the function, and analyze it for domain,
range, continuity, increasing or decreasing behavior, asymptotes, and
end behavior.

47. 48.

49. 50.

51. Sound Intensity Compute the sound intensity level in
decibels for each sound listed in Table 3.21.

ƒ1x2 = ln 1x32ƒ1x2 = log 1x22
ƒ1x2 = log1/3 19x2ƒ1x2 = log2 18x2
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Standardized Test Questions
57. True or False The logarithm of the product of two posi-

tive numbers is the sum of the logarithms of the numbers. Jus-
tify your answer.

58. True or False The logarithm of a positive number is
positive. Justify your answer.

In Exercises 59–62, solve the problem without using a calculator.

59. Multiple Choice

(A) (B)

(C) (D)

(E)

60. Multiple Choice

(A) (B)

(C) (D)

(E)

61. Multiple Choice

(A) (B)

(C) (D)

(E)

62. Multiple Choice

(A) (B)

(C) (D)

(E)

Explorations
63. (a) Compute the power regression model for the following

data.

-2 log2 ƒ  x ƒ

0.5 log2 x-0.5 log2 x

2 log2 x-2 log2 x

log1/2 x2
=

ln x2 # ln x3

3 ln x2x ln 5

2 ln x35 ln x

ln x5
=

1log 642/9
2 log9 321ln 642/1ln 92
1log3 8225 log3 2

log9 64 =

2 log 6

log 3 #  log 44 log 3

log 3 + log 43 log 4

log 12 =

Sources: J. J. Dwyer, College Physics. Belmont, CA:
Wadsworth, 1984; and E. Connally et al., Functions
Modeling Change. New York: Wiley, 2000.

Table 3.21 Approximate Intensities
for Selected Sounds

Intensity 
Sound

(a) Hearing threshold
(b) Rustling leaves
(c) Conversation
(d) School cafeteria
(e) Jack hammer
(f ) Pain threshold 1

10-2
10-4
10-6
10-11
10-12

1Watts/m22

52. Earthquake Intensity The Richter scale magnitude
R of an earthquake is based on the features of the associated
seismic wave and is measured by

where a is the amplitude in (micrometers), T is the period
in seconds, and B accounts for the weakening of the seismic
wave due to the distance from the epicenter. Compute the
earthquake magnitude R for each set of values.

(a) , , and 

(b) , , and 

53. Light Intensity in Lake Erie The relationship be-
tween intensity I of light (in lumens) at a depth of x feet in
Lake Erie is given by

What is the intensity at a depth of 40 ft?

54. Light Intensity in Lake Superior The relation-
ship between intensity I of light (in lumens) at a depth of x feet
in Lake Superior is given by

What is the intensity at a depth of 10 ft?

55. Writing to Learn Use the change-of-base formula to
explain how we know that the graph of can be
obtained by applying a transformation to the graph of

.

56. Writing to Learn Use the change-of-base formula to
explain how the graph of can be obtained by
applying transformations to the graph of .g1x2 = log x

ƒ1x2 = log0.8 x

g1x2 = ln x

ƒ1x2 = log3 x

log 
I

12
= -0.0125x.

log 
I

12
= -0.00235x.

B = 3.5T = 4a = 300

B = 4.25T = 2a = 250

mm

R = log 1a/T2 + B,

x 4 6.5 8.5 10

y 2816 31,908 122,019 275,000

x 2 3 4.8 7.7

y 7.48 7.14 6.81 6.41

(b) Predict the y-value associated with using the
power regression model.

(c) Re-express the data in terms of their natural logarithms and
make a scatter plot of .

(d) Compute the linear regression model 
for .

(e) Confirm that is the power regression model
found in (a).

64. (a) Compute the power regression model for the following
data.

y = eb # xa

1ln x, ln y2
1ln y2 = a1ln x2 + b

1ln x, ln y2

x = 7.1

(b) Predict the y-value associated with using the
power regression model.

(c) Re-express the data in terms of their natural logarithms and
make a scatter plot of .1ln x, ln y2

x = 9.2
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(d) Compute the linear regression model 
for .

(e) Confirm that is the power regression model
found in (a).

65. Keeping Warm—Revisited Recall 
from Exercise 55 of Section 2.2 that scien-
tists have found the pulse rate r of mam-
mals to be a power function of their body
weight w.

(a) Re-express the data in Table 3.22 in
terms of their common logarithms and
make a scatter plot of .

(b) Compute the linear regression model
for .

(c) Superimpose the regression curve on the scatter plot.

(d) Use the regression equation to predict the pulse rate for a
450-kg horse. Is the result close to the 38 beats/min re-
ported by A. J. Clark in 1927?

(e) Writing to Learn Why can we use either common
or natural logarithms to re-express data that fit a power re-
gression model?

1log w, log r21log r2 = a1log w2 + b

1log w, log r2

y = eb # xa

1ln x, ln y2
1ln y2 = a1ln x2 + b
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66. Let and . Then, for example, 
and . List all of the positive integers less
than 100 whose common logs can be written as expressions in-
volving a or b or both. (Hint: See Exploration 1 on page 283.)

Extending the Ideas
67. Solve .

68. Solve . 

69. Group Activity Work in groups of three. Have each
group member graph and compare the domains for one pair of
functions.

(a) and 

(b) and 

(c)

Writing to Learn After discussing your findings, write
a brief group report that includes your overall conclusions and
insights.

70. Prove the change-of-base formula for logarithms.

71. Prove that is a constant function with re-
stricted domain by finding the exact value of the constant

expressed as a common logarithm.

72. Graph , and analyze it for domain, range,
continuity, increasing or decreasing behavior, symmetry, 
asymptotes, end behavior, and invertibility.

ƒ1x2 = ln 1ln 1x22
log x/ ln x

ƒ1x2 = log x/ln x

ƒ1x2 = log 1x + 322 and g1x2 = 2 log 1x + 32
g1x2 = ln 

x + 5

x - 5
ƒ1x2 = ln 1x + 52 - ln 1x - 52

g1x2 = ln x21x - 32ƒ1x2 = 2 ln x + ln 1x - 32

1.2x
… log1.2 x

ln x 7 23 x

log 15 = 1 - a + b
log 6 = a + bb = log 3a = log 2

Source: A. J. Clark, Comparative Physiology of the Heart. 
New York: Macmillan, 1927.

Table 3.22 Weight and Pulse Rate of
Selected Mammals

Pulse Rate 
Mammal Body Weight (kg) (beats/min)

Rat 0.2 420
Guinea pig 0.3 300
Rabbit 2 205
Small dog 5 120
Large dog 30 85
Sheep 50 70
Human 70 72
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