
274 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

3.3 Logarithmic Functions 
and Their Graphs

What you’ll learn about
• Inverses of Exponential Functions
• Common Logarithms—Base 10
• Natural Logarithms—Base e
• Graphs of Logarithmic Functions
• Measuring Sound Using Decibels

... and why
Logarithmic functions are used in
many applications, including the
measurement of the relative inten-
sity of sounds.
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FIGURE 3.18 Exponential functions are either (a) increasing or (b) decreasing.y
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y = x

FIGURE 3.19 Because logarithmic func-
tions are inverses of exponential functions, we
can obtain the graph of a logarithmic function
by the mirror or rotational methods discussed
in Section 1.4.

A Bit of History
Logarithmic functions were developed around
1594 as computational tools by Scottish mathe-
matician John Napier (1550–1617). He origi-
nally called them “artificial numbers,” but
changed the name to logarithms, which means
“reckoning numbers.”

Generally 
In practice, logarithmic bases are almost always
greater than 1.

b>1

An immediate and useful consequence of this definition is the link between an expo-
nential equation and its logarithmic counterpart.

Changing Between Logarithmic and Exponential Form

If and , then

if and only if by
= x.y = logb1x2

0 6 b Z 1x 7 0

Basic Properties of Logarithms

For , , and any real number y,

• because .

• because .

• because .

• because .logb x = logb xb logb x
= x

by
= bylogb by

= y

b1
= blogb b = 1

b0
= 1logb 1 = 0

x 7 00 6 b Z 1

This linking statement says that a logarithm is an exponent. Because logarithms are 
exponents, we can evaluate simple logarithmic expressions using our understanding of
exponents.

EXAMPLE 1  Evaluating Logarithms

(a) because .

(b) because .

(c) because .

(d) because .

(e) because . Now try Exercise 1.71
= 7log7 7 = 1

40
= 1log4 1 = 0

5-2
=

1

52 =

1

25
log5 

1

25
= -2

31/2
= 13log3 13 = 1/2

23
= 8log2 8 = 3

We can generalize the relationships observed in Example 1.

Inverses of Exponential Functions
In Section 1.4 we learned that, if a function passes the horizontal line test, then the inverse of
the function is also a function. Figure 3.18 shows that an exponential function 
would pass the horizontal line test. So it has an inverse that is a function. This inverse is
the logarithmic function with base b, denoted , or more simply as That
is, if with and , then . See Figure 3.19.ƒ 

-11x2 = logb xb Z 1b 7 0ƒ1x2 = bx
logb x.logb1x2
ƒ1x2 = bx
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These properties give us efficient ways to evaluate simple logarithms and some expo-
nential expressions. The first two parts of Example 2 are the same as the first two parts
of Example 1.

SECTION 3.3 Logarithmic Functions and Their Graphs 275

EXAMPLE 2  Evaluating Logarithmic and Exponential 
Expressions

(a) .

(b) .

(c) . Now try Exercise 5.6log611
= 11

log3 13 = log3 31/2
= 1/2

log2 8 = log2 23
= 3

Logarithmic functions are inverses of exponential functions. So the inputs and outputs
are switched. Table 3.16 illustrates this relationship for and f -11x2 = log2 x.ƒ1x2 = 2x

Table 3.16 An Exponential Function and Its Inverse

x x

0 1 1 0
1 2 2 1
2 4 4 2
3 8 8 3

-11/21/2-1
-21/41/4-2
-31/81/8-3

f -11x2 = log2 xƒ1x2 = 2x

This relationship can be used to produce both tables and graphs for logarithmic func-
tions, as you will discover in Exploration 1.

EXPLORATION 1 Comparing Exponential and Logarithmic 
Functions

1. Set your grapher to Parametric mode and Simultaneous graphing mode.

Set X1T T and Y1T 2^T.

Set X2T 2^T and Y2T T.

Creating Tables. Set and . Use the Table feature of
your grapher to obtain the decimal form of both parts of Table 3.16. Be sure to
scroll to the right to see X2T and Y2T.

Drawing Graphs. Set , , and . Set the 
window to by . Use the Graph feature to obtain the simultane-

ous graphs of and . Use the Trace feature to explore
the numerical relationships within the graphs.

2. Graphing in Function mode. Graph in the same window. Then use the
“draw inverse” command to draw the graph of .y = log2 x

y = 2x

f -11x2 = log2 xƒ1x2 = 2x
3-4, 443-6, 64 1x, y2Tstep = 0.5Tmax = 6Tmin = -6

¢Tbl = 1TblStart = -3

==

==

Common Logarithms—Base 10
Logarithms with base 10 are called common logarithms. Because of their connection
to our base-ten number system, the metric system, and scientific notation, common log-
arithms are especially useful. We often drop the subscript of 10 for the base when using
common logarithms. The common logarithmic function is the inverse
of the exponential function . So

if and only if

Applying this relationship, we can obtain other relationships for logarithms with base 10.

10y
= x.y = log x

ƒ1x2 = 10x
log10 x = log x
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Using the definition of common logarithm or these basic properties, we can evaluate
expressions involving a base of 10.
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Basic Properties of Common Logarithms

Let x and y be real numbers with .

• because .

• because .

• because .

• because .log x = log x10log x
= x

10y
= 10ylog 10y

= y

101
= 10log 10 = 1

100
= 1log 1 = 0

x 7 0

Some Words of Warning
In Figure 3.20, notice we used “10^Ans” instead
of “10^1.537819095” to check This
is because graphers generally store more digits
than they display and so we can obtain a more
accurate check. Even so, because is
an irrational number, a grapher cannot produce
its exact value, so checks like those shown in
Figure 3.20 may not always work out so 
perfectly.

log 134.52

log 134.52.

Common logarithms can be evaluated by using the key on a calculator, as illus-
trated in Example 4.

LOG

EXAMPLE 3  Evaluating Logarithmic and Exponential 
Expressions—Base 10

(a) because .

(b) .

(c) .

(d) . Now try Exercise 7.10log 6
= 6

log 
1

1000
= log 

1

103 = log 10-3
= -3

log 25 10 = log 101/5
=

1

5

102
= 100log 100 = log10 100 = 2

log(34.5)

10^Ans

log(0.43)

10^Ans
.43

1.537819095

34.5

–.3665315444

FIGURE 3.20 Doing and checking com-
mon logarithmic computations. (Example 4)

EXAMPLE 4  Evaluating Common Logarithms 
with a Calculator

Use a calculator to evaluate the logarithmic expression if it is defined, and check
your result by evaluating the corresponding exponential expression.

(a) because .

(b) because .

See Figure 3.20.

(c) is undefined because there is no real number y such that . 
A grapher will yield either an error message or a complex-number answer for
entries such as . We shall restrict the domain of logarithmic functions
to the set of positive real numbers and ignore such complex-number answers.

Now try Exercise 25.

log 1-32
10y

= -3log 1-32

10-0.366Á
= 0.43log 0.43 = -0.366 Á

101.537Á
= 34.5log 34.5 = 1.537 Á

Changing from logarithmic form to exponential form sometimes is enough to solve an
equation involving logarithmic functions.

EXAMPLE 5  Solving Simple Logarithmic Equations
Solve each equation by changing it to exponential form.

(a) (b)

SOLUTION

(a) Changing to exponential form, .

(b) Changing to exponential form, . Now try Exercise 33.x = 25
= 32

x = 103
= 1000

log2 x = 5log x = 3
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Natural Logarithms—Base e
Because of their special calculus properties, logarithms with the natural base e are used
in many situations. Logarithms with base e are natural logarithms. We often use the
special abbreviation “ln” (without a subscript) to denote a natural logarithm. Thus, the
natural logarithmic function . It is the inverse of the exponential function

. So

if and only if

Applying this relationship, we can obtain other fundamental relationships for loga-
rithms with the natural base e.

ey
= x.y = ln x

ƒ1x2 = ex
loge x = ln x
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Basic Properties of Natural Logarithms

Let x and y be real numbers with .

• ln because .

• ln because .

• ln because .

• because ln .x = ln xeln x
= x

ey
= eyey

= y

e1
= ee = 1

e0
= 11 = 0

x 7 0

Reading a Natural Log
The expression ln x is pronounced “el en of ex.”
The “l” is for logarithm, and the “n” is for 
natural.

Using the definition of natural logarithm or these basic properties, we can evaluate ex-
pressions involving the natural base e.

EXAMPLE 6  Evaluating Logarithmic and Exponential 
Expressions—Base e

(a) ln because .

(b) ln .

(c) . Now try Exercise 13.eln 4
= 4

e5
= loge e

5
= 5

e1/2
= 2e2e = loge 2e = 1/2

Natural logarithms can be evaluated by using the key on a calculator, as illus-
trated in Example 7.

LN

EXAMPLE 7  Evaluating Natural Logarithms 
with a Calculator

Use a calculator to evaluate the logarithmic expression, if it is defined, and check
your result by evaluating the corresponding exponential expression.

(a) ln because .

(b) ln because .

See Figure 3.21.

(c) ln is undefined because there is no real number y such that . 
A grapher will yield either an error message or a complex-number answer for
entries such as ln . We will continue to restrict the domain of logarithmic
functions to the set of positive real numbers and ignore such complex-number
answers. Now try Exercise 29.

1-52
ey

= -51-52
e-0.733Á

= 0.480.48 = -0.733 Á

e3.157Á
= 23.523.5 = 3.157 Á

ln(23.5)

e^Ans

ln(0.48)

e^Ans
.48

3.157000421

23.5

–.7339691751

FIGURE 3.21 Doing and checking natural
logarithmic computations. (Example 7)

Graphs of Logarithmic Functions
The natural logarithmic function is one of the basic functions introduced in
Section 1.3. We now list its properties.

ƒ1x2 = ln x
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Any logarithmic function with has the same domain, range, conti-
nuity, increasing behavior, lack of symmetry, and other general behavior as .
It is rare that we are interested in logarithmic functions with .
So, the graph and behavior of are typical of logarithmic functions.

We now consider the graphs of the common and natural logarithmic functions and their
geometric transformations. To understand the graphs of and , we can
compare each to the graph of its inverse, and , respectively. Figure
3.23a shows that the graphs of and are reflections of each other across
the line . Similarly, Figure 3.23b shows that the graphs of and 
are reflections of each other across this same line.

y = 10xy = log xy = x
y = exy = ln x

y = exy = 10x
y = ln xy = log x

ƒ1x2 = ln x
0 6 b 6 1g1x2 = logb x
ƒ1x2 = ln x

b 7 1g1x2 = logb x
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Domain: 
Range: All reals
Continuous on 
Increasing on 
No symmetry
Not bounded above or below
No local extrema
No horizontal asymptotes
Vertical asymptote: 
End behavior: lim

x: q

 ln x = q

x = 0

10, q2
10, q2

10, q2
ƒ1x2 = ln x

BASIC FUNCTION The Natural Logarithmic 
Function

[–2, 6] by [–3, 3]

FIGURE 3.22

y

x

(a)

y = ex

y = x

y = ln x
1 4

1

4

y

x

(b)

y = x

y = log x
1 4

1

4

y = 10x

FIGURE 3.23 Two pairs of inverse functions.

[–1, 5] by [–2, 2]

y = log x

y = ln x

FIGURE 3.24 The graphs of the common
and natural logarithmic functions.

From Figure 3.24 we can see that the graphs of and have much in
common. Figure 3.24 also shows how they differ.

The geometric transformations studied in Section 1.5, together with our knowledge of
the graphs of and , allow us to predict the graphs of the functions in
Example 8.

y = log xy = ln x

y = ln xy = log x
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EXAMPLE 8  Transforming Logarithmic Graphs
Describe how to transform the graph of or into the graph of the
given function.

(a) (b)

(c) (d)

SOLUTION

(a) The graph of is obtained by translating the graph of
2 units to the left. See Figure 3.25a.

(b) . So we obtain the graph of 
from the graph of by applying, in order, a reflection across

the y-axis followed by a translation 3 units to the right. See Figure 3.25b.
y = ln xln 13 - x2 h1x2 =h1x2 = ln 13 - x2 = ln 3-1x - 324

y = ln 1x2 g1x2 = ln 1x + 22

h1x2 = 1 + log xg1x2 = 3 log x

h1x2 = ln 13 - x2g1x2 = ln 1x + 22
y = log xy = ln x

[–3, 6] by [–3, 3]

(a)

[–3, 6] by [–3, 3]

(b)

[–3, 6] by [–3, 3]

(c)

[–3, 6] by [–3, 3]

(d)

FIGURE 3.25 Transforming to obtain (a) and
(b) ; and to obtain (c) and
(d) . (Example 8)h1x2 = 1 + log x

g1x2 = 3 log xy = log xh1x2 = ln 13 - x2
g1x2 = ln 1x + 22y = ln x

(c) The graph of is obtained by vertically stretching the graph of
by a factor of 3. See Figure 3.25c.

(d) We can obtain the graph of from the graph of 
by a translation 1 unit up. See Figure 3.25d. Now try Exercise 41.

ƒ1x2 = log xh1x2 = 1 + log x

ƒ1x2 = log x
g1x2 = 3 log x

6965_CH03_pp251-318.qxd  1/14/10  1:11 PM  Page 279



280 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

DEFINITION Decibels

The level of sound intensity in decibels (dB) is

where (beta) is the number of decibels, I is the sound intensity in , and
is the threshold of human hearing (the quietest audible sound

intensity).
I0 = 10-12 W/m2

W/m2b

b = 10 log1I/I02,

Bel Is for Bell
The original unit for sound intensity level was
the bel (B), which proved to be inconveniently
large. So the decibel, one-tenth of a bel, has re-
placed it. The bel was named in honor of 
Scottish-born American Alexander Graham Bell
(1847–1922), inventor of the telephone.

Source: Adapted from R. W. Reading, Exploring Physics:
Concepts and Applications. Belmont, CA: Wadsworth, 1984.

Table 3.17 Approximate Intensities
of Selected Sounds

Intensity
Sound

Hearing threshold
Soft whisper at 5 m
City traffic
Subway train
Pain threshold
Jet at takeoff 103

100
10-2
10-5
10-11
10-12

1W/m22

Chapter Opener Problem (from page 251)

Problem: How loud is a train inside a subway tunnel?

Solution: Based on the data in Table 3.17,

So the sound intensity level inside the subway tunnel is 100 dB.

 = 10 # 10 = 100

 = 10 log110102
 = 10 log110-2/10-122

 b = 10 log1I/I02

QUICK REVIEW 3.3 (For help, go to Sections P.1 and A.1.)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–6, evaluate the expression without using a calculator.

1. 2.

3. 4.

5. 6.
913

278

811

228

10

2

40

5

10-35-2

In Exercises 7–10, rewrite as a base raised to a rational number 
exponent.

7. 8.

9. 10.
1

23 e2

1

1e

23 1025

Measuring Sound Using Decibels
Table 3.17 lists assorted sounds. Notice that a jet at takeoff is 100 trillion times as loud
as a soft whisper. Because the range of audible sound intensities is so great, common
logarithms (powers of 10) are used to compare how loud sounds are.

Sound Intensity
Sound intensity is the energy per unit time of a
sound wave over a given area, and is measured in
watts per square meter .1W/m22
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SECTION 3.3 EXERCISES

In Exercises 1–18, evaluate the logarithmic expression without using a
calculator.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19–24, evaluate the expression without using a calculator.

19. 20.

21. 22.

23. 24.

In Exercises 25–32, use a calculator to evaluate the logarithmic expres-
sion if it is defined, and check your result by evaluating the correspond-
ing exponential expression.

25. 26.

27. 28.

29. ln 4.05 30.

31. 32.

In Exercises 33–36, solve the equation by changing it to exponential
form.

33. 34.

35. 36.

In Exercises 37–40, match the function with its graph.

37. 38.

39. 40. ƒ1x2 = - ln 14 - x2ƒ1x2 = - ln 1x - 32
ƒ1x2 = log 1x + 12ƒ1x2 = log 11 - x2

log x = -3log x = -1

log x = 4log x = 2

ln 1-3.32ln 1-0.492
ln 0.733

log 1-5.142log 1-142
log 0.908log 9.43

eln11/52eln 6

10log1410log 10.52
5log5 87log7 3

ln 
1

2e7
ln 24 e

ln 1ln 
1
e

ln e-4ln e3

log 
1

11000
log 23 10

log 10-4log 100,000

log 10,000log 103

log6 
1

25 36
log5 23 25

log3 81log2 32

log6 1log4 4

In Exercises 41–46, describe how to transform the graph of 
into the graph of the given function. Sketch the graph by hand and sup-
port your sketch with a grapher.

41. 42.

43. 44.

45. 46.

In Exercises 47–52, describe how to transform the graph of 
into the graph of the given function. Sketch the graph by hand and sup-
port with a grapher.

47.

48.

49.

50.

51.

52.

In Exercises 53–58, graph the function, and analyze it for domain,
range, continuity, increasing or decreasing behavior, boundedness, 
extrema, symmetry, asymptotes, and end behavior.

53. 54.

55. 56.

57. 58.

59. Sound Intensity Use the data in Table 3.17 to compute
the sound intensity in decibels for (a) a soft whisper, (b) city
traffic, and (c) a jet at takeoff.

60. Light Absorption The Beer-
Lambert Law of Absorption applied to
Lake Erie states that the light intensity
I (in lumens), at a depth of x feet, sat-
isfies the equation

Find the intensity of the light at a
depth of 30 ft.

61. Population Growth Using the data in Table 3.18,
compute a logarithmic regression model, and use it to predict
when the population of San Antonio will be 1,500,000.

log 
I

12
= -0.00235x.

ƒ1x2 = 5 ln 12 - x2 - 3ƒ1x2 = 3 log 1x2 - 1

ƒ1x2 = - log 1x + 22ƒ1x2 = - ln 1x - 12
ƒ1x2 = ln 1x + 12ƒ1x2 = log 1x - 22

ƒ1x2 = -3 log 11 - x2 + 1

ƒ1x2 = 2 log 13 - x2 - 1

ƒ1x2 = -3 log 1-x2
ƒ1x2 = -2 log 1-x2
ƒ1x2 = log 1x - 32
ƒ1x2 = -1 + log 1x2

y = log x

ƒ1x2 = ln 15 - x2ƒ1x2 = ln 12 - x2
ƒ1x2 = ln 1-x2 - 2ƒ1x2 = ln 1-x2 + 3

ƒ1x2 = ln 1x2 + 2ƒ1x2 = ln 1x + 32

y = ln x

(a) (b)

(c) (d)

Source: World Alamanac and Book of
Facts 2005.

Table 3.18 Population of
San Antonio

Year Population

1970 654,153
1980 785,940
1990 935,933
2000 1,151,305
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62. Population Decay Using the data in Table 3.19, com-
pute a logarithmic regression model, and use it to predict when
the population of Milwaukee will be 500,000.

(C) It is continuous on its domain.

(D) It is unbounded.

(E) It has a vertical asymptote.

68. Multiple Choice Which of the following is the inverse
of ?

(A) (B)

(C) (D)

(E)

Explorations
69. Writing to Learn Parametric Graphing In the

manner of Exploration 1, make tables and graphs for
and its inverse . Write a compara-

tive analysis of the two functions regarding domain, range, in-
tercepts, and asymptotes.

70. Writing to Learn Parametric Graphing In the
manner of Exploration 1, make tables and graphs for

and its inverse . Write a compara-
tive analysis of the two functions regarding domain, range, in-
tercepts, and asymptotes.

71. Group Activity Parametric Graphing In the
manner of Exploration 1, find the number such that the
graphs of and its inverse have ex-
actly one point of intersection. What is the one point that is in
common to the two graphs?

72. Writing to Learn Explain why zero is not in the do-
main of the logarithmic functions and

.

Extending the Ideas
73. Describe how to transform the graph of into the

graph of .

74. Describe how to transform the graph of into the
graph of .g1x2 = log0.1 x

ƒ1x2 = log x

g1x2 = log1/e x
ƒ1x2 = ln x

g1x2 = log5 x
ƒ1x2 = log3 x

ƒ-11x2 = logb xƒ1x2 = bx
b 7 1

ƒ-11x2 = log5 xƒ1x2 = 5x

ƒ-11x2 = log3 xƒ1x2 = 3x

f -11x2 = 0.5 log3 1x2
f -11x2 = 3 log2 1x2f -11x2 = 2 log3 1x2
f -11x2 = log2 1x/32f -11x2 = log3 1x/22

ƒ1x2 = 2 # 3x
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Source: World Alamanac and Book of
Facts 2005.

Table 3.19 Population of 
Milwaukee

Year Population

1970 717,372
1980 636,297
1990 628,088
2000 596,974

Standardized Test Questions
63. True or False A logarithmic function is the inverse of an

exponential function. Justify your answer.

64. True or False Common logarithms are logarithms with
base 10. Justify your answer.

In Exercises 65–68, you may use a graphing calculator to solve the
problem.

65. Multiple Choice What is the approximate value of the
common log of 2?

(A) 0.10523 (B) 0.20000

(C) 0.30103 (D) 0.69315

(E) 3.32193

66. Multiple Choice Which statement is false?

(A) (B)

(C) (D)

(E)

67. Multiple Choice Which statement is false about
?

(A) It is increasing on its domain.

(B) It is symmetric about the origin.

ƒ1x2 = ln x

log 5 = log 10 - log 2

log 5 6 log 10log 5 7 log 2

log 5 = 1 - log 2log 5 = 2.5 log 2
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