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3.2 Exponential and Logistic 
Modeling

What you’ll learn about
• Constant Percentage Rate and

Exponential Functions
• Exponential Growth and Decay

Models
• Using Regression to Model 

Population
• Other Logistic Models

... and why
Exponential functions model
many types of unrestricted
growth; logistic functions model
restricted growth, including the
spread of disease and the
spread of rumors.

Time in Years Population

0 initial population

1

2

3

t P1t2 = P011 + r2t
oo

P132 = P122 # 11 + r2 = P011 + r23
P122 = P112 # 11 + r2 = P011 + r22
P112 = P0 + P0r = P011 + r2
P102 = P0 =

So, in this case, the population is an exponential function of time.

Exponential Population Model

If a population P is changing at a constant percentage rate r each year, then

where is the initial population, r is expressed as a decimal, and t is time in
years.

P0

P1t2 = P0(1 + r2t,

If , then is an exponential growth function, and its growth factor is the base
of the exponential function, .

On the other hand, if , the base is an exponential decay func-
tion, and is the decay factor for the population.1 + r

1 + r 6 1, P1t2r 6 0

1 + r
P1t2r 7 0

EXAMPLE 1  Finding Growth and Decay Rates
Tell whether the population model is an exponential growth function or exponential
decay function, and find the constant percentage rate of growth or decay.

(a) San Jose:

(b) Detroit:

SOLUTION

(a) Because , . So, P is an exponential growth func-
tion with a growth rate of 0.64%.

(b) Because , . So, P is an exponential decay
function with a decay rate of 1.42%. Now try Exercise 1.

r = -0.0142 6 01 + r = 0.9858

r = 0.0064 7 01 + r = 1.0064

P1t2 = 1,203,368 # 0.9858t

P1t2 = 898,759 # 1.0064t

Constant Percentage Rate and Exponential
Functions
Suppose that a population is changing at a constant percentage rate r, where r is the
percent rate of change expressed in decimal form. Then the population follows the
pattern shown.
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266 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

EXAMPLE 2  Finding an Exponential Function
Determine the exponential function with initial value , increasing at a rate of
8% per year.

SOLUTION Because and , the function is 

or . We could write this as , where
x represents time. Now try Exercise 7.

ƒ1x2 = 12 # 1.08xP1t2 = 12 # 1.08t0.082t12(1 +

P1t2 =r = 8% = 0.08P0 = 12

= 12

Exponential Growth and Decay Models
Exponential growth and decay models are used for populations of animals, bacteria,
and even radioactive atoms. Exponential growth and decay apply to any situation where
the growth is proportional to the current size of the quantity of interest. Such situations
are frequently encountered in biology, chemistry, business, and the social sciences.

Exponential growth models can be developed in terms of the time it takes a quantity to
double. On the flip side, exponential decay models can be developed in terms of the
time it takes for a quantity to be halved. Examples 3 through 5 use these strategies.

EXAMPLE 3  Modeling Bacteria Growth
Suppose a culture of 100 bacteria is put into a petri dish and the culture doubles
every hour. Predict when the number of bacteria will be 350,000.

SOLUTION

Model

Total bacteria after 1 hr

Total bacteria after 2 hr

Total bacteria after 3 hr

Total bacteria after t hr

So the function represents the bacteria population t hr after it is
placed in the petri dish.

Solve Graphically Figure 3.12 shows that the population function intersects
when .

Interpret The population of the bacteria in the petri dish will be 350,000 in about 
11 hr and 46 min. Now try Exercise 15.

t L 11.77y = 350,000

P1t2 = 100 # 2t

 P1t2 = 100 # 2t

 o

 800 = 100 # 23

 400 = 100 # 22

 200 = 100 # 2450,000

300,000

150,000

P(t)

t
–5 151050

Time

Bacteriology Research

Intersection:
t = 11.773139; P = 350,000

Po
pu

la
tio

n

FIGURE 3.12 Rapid growth of a bacteria
population. (Example 3)

Exponential decay functions model the amount of a radioactive substance present in a
sample. The number of atoms of a specific element that change from a radioactive state
to a nonradioactive state is a fixed fraction per unit time. The process is called
radioactive decay, and the time it takes for half of a sample to change its state is the
half-life of the radioactive substance.

EXAMPLE 4  Modeling Radioactive Decay
Suppose the half-life of a certain radioactive substance is 20 days and there are 5 g
(grams) present initially. Find the time when there will be 1 g of the substance re-
maining.
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SOLUTION

Model If t is the time in days, the number of half-lives will be .

Grams after 20 days

Grams after days

Grams after t days

Thus the function models the mass in grams of the radioactive sub-
stance at time t.

Solve Graphically Figure 3.13 shows that the graph of intersects
when .

Interpret There will be 1 g of the radioactive substance left after approximately
46.44 days, or about 46 days, 11 hr. Now try Exercise 33.

t L 46.44y = 1
ƒ1t2 = 5 # 0.5t/20

ƒ1t2 = 5 # 0.5t/20

 ƒ1t2 = 5a1

2
b t/20

 o

21202 = 40 
5

4
= 5a1

2
b40/20

 
5

2
= 5a1

2
b20/20

t/20

x
–20 604020 80

Time

Radioactive Decay

Intersection:
x = 46.438562, y = 1

M
as

s

12

y

FIGURE 3.13 Radioactive decay. 
(Example 4)

Scientists have established that atmospheric pressure at sea level is , and
the pressure is reduced by half for each 3.6 mi above sea level. For example, the pres-
sure 3.6 mi above sea level is . This rule for atmospheric
pressure holds for altitudes up to 50 mi above sea level. Though the context is differ-
ent, the mathematics of atmospheric pressure closely resembles the mathematics of 
radioactive decay.

11/22114.72 = 7.35 lb/in.2

14.7 lb/in.2

EXAMPLE 5  Determining Altitude from Atmospheric Pressure
Find the altitude above sea level at which the atmospheric pressure is .

SOLUTION

Model

Pressure at 3.6 mi

Pressure at 

Pressure at h mi

So models the atmospheric pressure P (in pounds per square
inch) as a function of the height h (in miles above sea level). We must find the value
of h that satisfies the equation

Solve Graphically Figure 3.14 shows that the graph of inter-
sects when .

Interpret The atmospheric pressure is at an altitude of approximately 
6.76 mi above sea level. Now try Exercise 41.

4 lb/in.2
h L 6.76y = 4

P(h2 = 14.7 # 0.5h/3.6

14.7 # 0.5h/3.6
= 4.

P(h2 = 14.7 # 0.5h/3.6

 P(h2 = 14.7 # 0.5h/3.6

 o

213.62 = 7.2 mi 3.675 = 14.7 # 0.57.2/3.6

 7.35 = 14.7 # 0.53.6/3.6

4 lb/in.2

[0, 20] by [–4, 15]

Intersection
X=6.7598793 Y=4

FIGURE 3.14 A model for atmospheric
pressure. (Example 5)

Using Regression to Model Population
So far, our models have been given to us or developed algebraically. We now use expo-
nential and logistic regression to build models from population data.

Due to the post–World War II baby boom and other factors, exponential growth is not a
perfect model for the U.S. population. It does, however, provide a means to make ap-
proximate predictions, as illustrated in Example 6.
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Exponential growth is unrestricted, but population growth often is not. For many popu-
lations, the growth begins exponentially, but eventually slows and approaches a limit to
growth called the maximum sustainable population.

In Section 3.1 we modeled Dallas’s population with a logistic function. We now use 
logistic regression to do the same for the populations of Florida and Pennsylvania. As
the data in Table 3.10 suggest, Florida had rapid growth in the second half of the 20th
century, whereas Pennsylvania appears to be approaching its maximum sustainable
population.
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EXAMPLE 6  Modeling U.S. Population Using 
Exponential Regression

Use the 1900–2000 data in Table 3.9 and exponential regression to predict the U.S.
population for 2007. Compare the result with the listed value for 2007.

SOLUTION

Model

Let be the population (in millions) of the United States t years after 1900. 
Figure 3.15a shows a scatter plot of the data. Using exponential regression, we find a
model for the 1990–2000 data:

Figure 3.15b shows the scatter plot of the data with a graph of the population model
just found. You can see that the curve fits the data fairly well. The coefficient of de-
termination is , indicating a close fit and supporting the visual evidence.

Solve Graphically

To predict the 2007 U.S. population we substitute into the regression model.
Figure 3.15c reports that .

Interpret

The model predicts the U.S. population was 317.1 million in 2007. The actual popu-
lation was 301.6 million. We overestimated by 15.5 million, a 5.1% error.

Now try Exercise 43.

P(1072 = 80.5514 # 1.01289107
L 317.1

t = 107

r 2
L 0.995

P1t2 = 80.5514 # 1.01289t

P1t2

Source: World Almanac and Book of
Facts 2009.

Table 3.9 U.S. Population
(in millions)

Year Population

1900 76.2
1910 92.2
1920 106.0
1930 123.2
1940 132.2
1950 151.3
1960 179.3
1970 203.3
1980 226.5
1990 248.7
2000 281.4
2007 301.6

[–10, 120] by [0, 400]

(a)

[–10, 120] by [0, 400]

(b)

[–10, 120] by [0, 400]

(c)

X=107    Y=317.13007

Y1=80.5514*1.01289^X

FIGURE 3.15 Scatter plots and graphs for Example 6. The red “ ” depicts the data point for 2007. The blue “x” in (c) represents the model’s
prediction for 2007.

+
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SECTION 3.2 Exponential and Logistic Modeling 269

Source: U.S. Census Bureau.

Table 3.10 Populations of Two
U.S. States (in millions)

Year Florida Pennsylvania

1900 0.5 6.3
1910 0.8 7.7
1920 1.0 8.7
1930 1.5 9.6
1940 1.9 9.9
1950 2.8 10.5
1960 5.0 11.3
1970 6.8 11.8
1980 9.7 11.9
1990 12.9 11.9
2000 16.0 12.3

EXAMPLE 7  Modeling Two States’ Populations Using 
Logistic Regression

Use the data in Table 3.10 and logistic regression to predict the maximum sustainable
populations for Florida and Pennsylvania. Graph the logistic models and interpret
their significance.

SOLUTION Let and be the populations (in millions) of Florida and
Pennsylvania, respectively, t years after 1800. Figure 3.16a shows a scatter plot of
the data for both states; the data for Florida is shown in black, and for Pennsylvania,
in red. Using logistic regression, we obtain the models for the two states:

and

Figure 3.16b shows the scatter plots of the data with graphs of the two population
models. You can see that the curves fit the data fairly well. From the numerators of
the models we see that

and

So the maximum sustainable population for Florida is about 28.0 million, and for
Pennsylvania is about 12.6 million.

Figure 3.16c shows a three-century span for the two states. Pennsylvania had rapid
growth in the 19th century and first half of the 20th century, and is now approaching
its limit to growth. Florida, on the other hand, is currently experiencing extremely
rapid growth but should be approaching its maximum sustainable population by the
end of the 21st century. Now try Exercise 50.

lim
t: q

 P1t2 = 12.579.lim
t: q

 F1t2 = 28.021

P1t2 =

12.579

1 + 29.0003e-0.034315tF1t2 =

28.021

1 + 9018.63e-0.047015t

P1t2F1t2

[90, 210] by [–5, 20]

(a)

[90, 210] by [–5, 20]

(b)

[–10, 300] by [–5, 30]

(c)

FIGURE 3.16 Scatter plots and graphs for Example 7.
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Other Logistic Models
In Example 3, the bacteria cannot continue to grow exponentially forever because they
cannot grow beyond the confines of the petri dish. In Example 7, though Florida’s pop-
ulation is booming now, it will eventually level off, just as Pennsylvania’s has done.
Sunflowers and many other plants grow to a natural height following a logistic pattern.
Chemical acid-base titration curves are logistic. Yeast cultures grow logistically. Conta-
gious diseases and even rumors spread according to logistic models.
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EXAMPLE 8  Modeling a Rumor
Watauga High School has 1200 students. Bob, Carol, Ted, and Alice start a rumor,
which spreads logistically so that models the number
of students who have heard the rumor by the end of Day t.

(a) How many students have heard the rumor by the end of Day 0?

(b) How long does it take for 1000 students to hear the rumor?

SOLUTION

(a) So, 30 students have heard the rumor

by the end of Day 0.

(b) We need to solve .

Figure 3.17 shows that the graph of intersects
when . So toward the end of Day 6 the rumor has reached the ears

of 1000 students. Now try Exercise 45.
t L 5.86y = 1000

S1t2 = 1200/(1 + 39 # e-0.9t2
1200

1 + 39e-0.9t = 1000

S102 =

1200

1 + 39 # e-0.9 #0 =

1200

1 + 39
= 30.

S1t2 = 1200/11 + 39 # e-0.9t2

[0, 10] by [–400, 1400]

Intersection
X=5.8588884   Y=1000

FIGURE 3.17 The spread of a rumor. (Ex-
ample 8)

QUICK REVIEW 3.2 (For help, go to Section P.5.)

SECTION 3.2 EXERCISES

In Exercises 1–6, tell whether the function is an exponential growth
function or exponential decay function, and find the constant percent-
age rate of growth or decay.

1. 2. P1t2 = 4.3 # 1.018tP1t2 = 3.5 # 1.09t

3. 4.

5. 6. g1t2 = 43 # 0.05tg1t2 = 247 # 2t

ƒ1x2 = 5607 # 0.9968xƒ1x2 = 78,963 # 0.968x

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1 and 2, convert the percent to decimal form or the dec-
imal into a percent.

1. 15%

2. 0.04

3. Show how to increase 23 by 7% using a single 
multiplication.

4. Show how to decrease 52 by 4% using a single 
multiplication.

In Exercises 5 and 6, solve the equation algebraically.

5.

6.

In Exercises 7–10, solve the equation numerically.

7.

8.

9.

10. 127b7
= 56

672b4
= 91

93b5
= 521

782b6
= 838

243 # b3
= 9

40 # b2
= 160
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In Exercises 7–18, determine the exponential function that satisfies the
given conditions.

7. Initial , increasing at a rate of 17% per year

8. , increasing at a rate of 2.3% per day

9. , decreasing at a rate of 50% per month

10. , decreasing at a rate of 0.59% per week

11. , decreasing at a rate of 2.6% 
per year

12. , increasing at a rate of 1.7% 
per year

13. , growing at a rate of 5.2% per week

14. , decreasing at a rate of 4.6% per day

15. , doubling every 3 days

16. , doubling every 7.5 hours

17. , halving once every 6 years

18. , halving once every 32 hours

In Exercises 19 and 20, determine a formula for the exponential func-
tion whose values are given in Table 3.11.

19. 20. g1x2ƒ1x2

Initial mass = 17 g

Initial mass = 592 g

Initial population = 250

Initial mass = 0.6 g

Initial mass = 15 g

Initial height = 18 cm

Initial population = 502,000

Initial population = 28,900

Initial value = 5

Initial value = 16

Initial value = 52

value = 5

In Exercises 27 and 28, determine a formula for the logistic function
whose graph is shown in the figure.

27. 28.
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Table 3.11 Values for Two Exponential Functions

x

1.472
1.84

0 2.3
1 2.875
2 3.59375 -3.7123

-4.64
-5.8
-7.25-1
-9.0625-2

g1x2ƒ1x2

y

x

(0, 4) (5, 8.05)
(0, 3)

y

x

(4, 1.49)

In Exercises 21 and 22, determine a formula for the exponential func-
tion whose graph is shown in the figure.

21. 22.

In Exercises 23–26, find the logistic function that satisfies the given
conditions.

23. , , passing through
.

24. , , passing through
.

25. , maximum sustainable population
, passing through .

26. , , passing through
.13, 152

limit to growth = 30Initial height = 5

15, 322=  128
Initial population = 16

11, 242
limit to growth = 60Initial value = 12

11, 202
limit to growth = 40Initial value = 10

y

x

y = 20

(0, 5)
(2, 10)

y

x

y = 60

(0, 15) (8, 30)

29. Exponential Growth The 2000 population of 
Jacksonville, Florida, was 736,000 and was increasing at the
rate of 1.49% each year. At that rate, when will the population
be 1 million?

30. Exponential Growth The 2000 population of Las 
Vegas, Nevada, was 478,000 and is increasing at the rate of
6.28% each year. At that rate, when will the population be 
1 million?

31. Exponential Growth The population of Smallville in
the year 1890 was 6250. Assume the population increased at a
rate of 2.75% per year.

(a) Estimate the population in 1915 and 1940.

(b) Predict when the population reached 50,000.

32. Exponential Growth The population of River City in
the year 1910 was 4200. Assume the population increased at a
rate of 2.25% per year.

(a) Estimate the population in 1930 and 1945.

(b) Predict when the population reached 20,000.

33. Radioactive Decay The half-life of a certain radioac-
tive substance is 14 days. There are 6.6 g present initially.

(a) Express the amount of substance remaining as a function
of time t.

(b) When will there be less than 1 g remaining?

34. Radioactive Decay The half-life of a certain radioac-
tive substance is 65 days. There are 3.5 g present initially.

(a) Express the amount of substance remaining as a function
of time t.

(b) When will there be less than 1 g remaining?

35. Writing to Learn Without using formulas or graphs,
compare and contrast exponential functions and linear 
functions.

36. Writing to Learn Without using formulas or graphs,
compare and contrast exponential functions and logistic 
functions.
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37. Writing to Learn Using the population model that is
graphed in the figure, explain why the time it takes the 
population to double (doubling time) is independent of the
population size.

45. Spread of Flu The number of students infected with flu at
Springfield High School after t days is modeled by the function

(a) What was the initial number of infected students?

(b) When will the number of infected students be 200?

(c) The school will close when 300 of the 800-student body
are infected. When will the school close?

46. Population of Deer The population of deer after t
years in Cedar State Park is modeled by the function

(a) What was the initial population of deer? 

(b) When will the number of deer be 600?

(c) What is the maximum number of deer possible in the 
park?

47. Population Growth Using all of the data in Table 3.9,
compute a logistic regression model, and use it to predict the
U.S. population in 2010.

48. Population Growth Using the data in Table 3.13, con-
firm the model used in Example 8 of Section 3.1.

P1t2 =

1001

1 + 90e-0.2t
.

P1t2 =

800

1 + 49e-0.2t
.
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38. Writing to Learn Explain why the half-life of a ra-
dioactive substance is independent of the initial amount of the
substance that is present.

39. Bacteria Growth The number B of bacteria in a petri
dish culture after t hours is given by

When will the number of bacteria be 200? Estimate the dou-
bling time of the bacteria.

40. Radiocarbon Dating The amount C in grams of 
carbon-14 present in a certain substance after t years is given
by

Estimate the half-life of carbon-14.

41. Atmospheric Pressure Determine the atmospheric
pressure outside an aircraft flying at 52,800 ft (10 mi above 
sea level).

42. Atmospheric Pressure Find the altitude above sea
level at which the atmospheric pressure is .

43. Population Modeling Use the 1950–2000 data in
Table 3.12 and exponential regression to predict Los Angeles’s
population for 2007. Compare the result with the listed value
for 2007. [Hint: Let 1900 be ]

44. Population Modeling Use the 1950–2000 data in
Table 3.12 and exponential regression to predict Phoenix’s
population for 2007. Compare the result with the listed value
for 2007. Repeat these steps using 1960–2000 data to create
the model. [Hint: Let 1900 be ]t = 0.

t = 0.

2.5 lb/in.2

C = 20e-0.0001216t.

B = 100e0.693t.

Source: World Almanac and Book of Facts
2002, 2009.

Table 3.12 Populations of Two
U.S. Cities (in thousands)

Year Los Angeles Phoenix

1950 1970 107
1960 2479 439
1970 2812 584
1980 2969 790
1990 3485 983
2000 3695 1321
2007 3834 1552

Table 3.13 Population of Dallas, Texas

Year Population

1950 434,462
1960 679,684
1970 844,401
1980 904,599
1990 1,006,877
2000 1,188,589

Source: U.S. Census Bureau.

Source: U.S. Census Bureau.

Table 3.14 Populations of Two 
U.S. States (in millions)

Year Arizona New York

1900 0.1 7.3
1910 0.2 9.1
1920 0.3 10.3
1930 0.4 12.6
1940 0.5 13.5
1950 0.7 14.8
1960 1.3 16.8
1970 1.8 18.2
1980 2.7 17.6
1990 3.7 18.0
2000 5.1 19.0

49. Population Growth Using the data in Table 3.14, con-
firm the model used in Exercise 56 of Section 3.1.
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50. Population Growth Using the data in Table 3.14,
compute a logistic regression model for Arizona’s population
for t years since 1800. Based on your model and the New York
population model from Exercise 56 of Section 3.1, will the
population of Arizona ever surpass that of New York? If so,
when?

Standardized Test Questions
51. True or False Exponential population growth is 

constrained with a maximum sustainable population. Justify
your answer.

52. True or False If the constant percentage rate of an expo-
nential function is negative, then the base of the function is
negative. Justify your answer.

In Exercises 53–56, you may use a graphing calculator to solve the
problem.

53. Multiple Choice What is the constant percentage growth
rate of ?

(A) 49% (B) 23% (C) 4.9% (D) 2.3% (E) 1.23%

54. Multiple Choice What is the constant percentage decay
rate of ?

(A) 22.7% (B) 16.6% (C) 8.34%

(D) 2.27% (E) 0.834%

55. Multiple Choice A single-cell amoeba doubles every 4
days. About how long will it take one amoeba to produce a
population of 1000?

(A) 10 days (B) 20 days (C) 30 days

(D) 40 days (E) 50 days

56. Multiple Choice A rumor spreads logistically so that
models the number of persons

who have heard the rumor by the end of t days. Based on this
model, which of the following is true?

(A) After 0 days, 16 people have heard the rumor.

(B) After 2 days, 439 people have heard the rumor.

(C) After 4 days, 590 people have heard the rumor.

(D) After 6 days, 612 people have heard the rumor.

(E) After 8 days, 769 people have heard the rumor.

Explorations
57. Population Growth (a) Use the 1900–1990 data in

Table 3.9 and logistic regression to predict the U.S. population
for 2000.

(b) Writing to Learn Compare the prediction with the
value listed in the table for 2000.

S1t2 = 789/(1 + 16 # e-0.8t2

P1t2 = 22.7 # 0.834t

P1t2 = 1.23 # 1.049t

(c) Noting the results of Example 6, which model— 
exponential or logistic—makes the better prediction in 
this case?

58. Population Growth Use all of the data in Tables 3.9
and 3.15.

(a) Based on exponential growth models, will Mexico’s popu-
lation surpass that of the United States, and if so, when?

(b) Based on logistic growth models, will Mexico’s population
surpass that of the United States, and if so, when?

(c) What are the maximum sustainable populations for the two
countries?

(d) Writing to Learn Which model—exponential or 
logistic—is more valid in this case? Justify your choice. 
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Sources: 1992 Statesman’s Yearbook and
World Almanac and Book of Facts 2002.

Table 3.15 Population of Mexico 
(in millions)

Year Population

1900 13.6
1950 25.8
1960 34.9
1970 48.2
1980 66.8
1990 88.1
2001 101.9
2025 130.2
2050 154.0

Extending the Ideas
59. The hyperbolic sine function is defined by

. Prove that sinh is an odd function.

60. The hyperbolic cosine function is defined by 
. Prove that cosh is an even function.

61. The hyperbolic tangent function is defined by 
.

(a) Prove that .
(b) Prove that tanh is an odd function.
(c) Prove that is a logistic function.ƒ1x2 = 1 + tanh1x2

tanh1x2 = sinh1x2/cosh1x2
1ex

- e-x2/1ex
+ e-x2

tanh1x2 =

1ex
+ e-x2/2

cosh1x2 =

sinh1x2 = 1ex
- e-x)/2
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