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Exponential, Logistic, and
Logarithmic Functions

The loudness of a sound we hear is based on the intensity of the associ-
ated sound wave. This sound intensity is the energy per unit time of the
wave over a given area, measured in watts per square meter . The
intensity is greatest near the source and decreases as you move away,
whether the sound is rustling leaves or rock music. Because of the wide
range of audible sound intensities, they are generally converted into
decibels, which are based on logarithms. See page 280.
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Chapter 3 Overview
In this chapter, we study three interrelated families of functions: exponential, logistic,
and logarithmic functions. Polynomial functions, rational functions, and power func-
tions with rational exponents are algebraic functions— functions obtained by adding,
subtracting, multiplying, and dividing constants and an independent variable, and rais-
ing expressions to integer powers and extracting roots. In this chapter and the next one,
we explore transcendental functions, which go beyond, or transcend, these algebraic
operations.

Just like their algebraic cousins, exponential, logistic, and logarithmic functions have
wide application. Exponential functions model growth and decay over time, such as
unrestricted population growth and the decay of radioactive substances. Logistic func-
tions model restricted population growth, certain chemical reactions, and the spread of
rumors and diseases. Logarithmic functions are the basis of the Richter scale of earth-
quake intensity, the pH acidity scale, and the decibel measurement of sound.

The chapter closes with a study of the mathematics of finance, an application of expo-
nential and logarithmic functions often used when making investments.
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3.1 Exponential and Logistic 
Functions

Exponential Functions and Their Graphs
The functions and each involve a base raised to a power, but the
roles are reversed:

• For , the base is the variable x, and the exponent is the constant 2; ƒ is a
familiar monomial and power function.

• For , the base is the constant 2, and the exponent is the variable x; g is an
exponential function. See Figure 3.1.

g1x2 = 2x

ƒ1x2 = x2

g1x2 = 2xƒ1x2 = x2

What you’ll learn about
• Exponential Functions and Their

Graphs
• The Natural Base e
• Logistic Functions and Their

Graphs
• Population Models

... and why
Exponential and logistic functions
model many growth patterns, in-
cluding the growth of human and
animal populations.

x
1–1–2–3–4 2 3 4

y

5
10
15
20

FIGURE 3.1 Sketch of .g1x2 = 2x

Exponential functions are defined and continuous for all real numbers. It is important
to recognize whether a function is an exponential function.

EXAMPLE 1  Identifying Exponential Functions
(a) is an exponential function, with an initial value of 1 and base of 3.

(b) is not an exponential function because the base x is a variable and
the exponent is a constant; g is a power function.

(c) is an exponential function, with an initial value of and base
of 1.5.

-2h1x2 = -2 # 1.5x

g1x2 = 6x -4

ƒ1x2 = 3x

DEFINITION Exponential Functions

Let a and b be real number constants. An exponential function in x is a func-
tion that can be written in the form

where a is nonzero, b is positive, and . The constant a is the initial value
of ƒ (the value at ), and b is the base.x = 0

b Z 1

ƒ1x2 = a # bx,
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One way to evaluate an exponential function, when the inputs are rational numbers, is
to use the properties of exponents.

SECTION 3.1 Exponential and Logistic Functions 253

(d) is an exponential function, with an initial value of 7 and base of 

because .

(e) is not an exponential function because the exponent is a con-
stant; q is a constant function. Now try Exercise 1.

pq1x2 = 5 # 6p
2-x

= 12-12x = 11/22x1/2

k1x2 = 7 # 2-x

EXAMPLE 2  Computing Exponential Function Values 
for Rational Number Inputs

For ,

(a)

(b)

(c)

(d)

(e)

Now try Exercise 7.

ƒa -  

3

2
b = 2-3/2

=

1

23/2 =

1

223
=

1

18
= 0.35355 Á

ƒa1

2
b = 21/2

= 12 = 1.4142 Á

ƒ1-32 = 2-3
=

1

23 =

1

8
= 0.125

ƒ102 = 20
= 1

ƒ142 = 24
= 2 # 2 # 2 # 2 = 16

ƒ1x2 = 2x

There is no way to use properties of exponents to express an exponential function’s
value for irrational inputs. For example, if , , but what does 

mean? Using properties of exponents, . So we can
find meaning for by using successively closer rational approximations to as
shown in Table 3.1.

p2p
23

= 2 # 2 # 2, 23.1
= 231/10

=

102231

2pƒ1p2 = 2pƒ1x2 = 2x

Table 3.1 Values of for Rational Numbers x
Approaching 

x 3 3.1 3.14 3.141 3.1415 3.14159
8 8.5. . . 8.81. . . 8.821. . . 8.8244. . . 8.82496. . .2x

P � 3.14159265. . .
ƒ1x2 = 2x

We can conclude that , which could be found directly using a
grapher. The methods of calculus permit a more rigorous definition of exponential
functions than we give here, a definition that allows for both rational and irrational
inputs.

The way exponential functions change makes them useful in applications. This pattern
of change can best be observed in tabular form.

ƒ1p2 = 2p L 8.82
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254 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

EXAMPLE 3  Finding an Exponential Function 
from Its Table of Values

Determine formulas for the exponential functions g and h whose values are given in
Table 3.2.

Table 3.2 Values for Two Exponential Functions

x

128

32

1

2 36 1/2

*

1

4
* 3

212

*

1

4
* 3

840

*

1

4
* 3

4/3-1

*

1

4
* 3

4/9-2

h1x2g1x2

→
→

→
→

→
→

→
→

SOLUTION Because g is exponential, . Because , the 
initial value a is 4. Because , the base b is 3. So,

Because h is exponential, . Because , the initial value a is 8.
Because , the base b is . So,

Figure 3.2 shows the graphs of these functions pass through the points whose coordi-
nates are given in Table 3.2. Now try Exercise 11.

h1x2 = 8 # a1

4
bx

.

1/4h112 = 8 # b1
= 2

h102 = 8h1x2 = a # bx

g1x2 = 4 # 3x.

g112 = 4 # b1
= 12

g102 = 4g1x2 = a # bx

Observe the patterns in the and columns of Table 3.2. The values in-
crease by a factor of 3 and the values decrease by a factor of 1/4, as we add 1 to x
moving from one row of the table to the next. In each case, the change factor is the base
of the exponential function. This pattern generalizes to all exponential functions as il-
lustrated in Table 3.3.

In Table 3.3, as x increases by 1, the function value is multiplied by the base b. This re-
lationship leads to the following recursive formula.

h1x2 g1x2h1x2g1x2Table 3.3 Values for a General 
Exponential Function ƒ1x2 � a # bx

x

0 a

1 ab

2
* b

ab2

* b

* b
ab -1

-1
* bab -2

-2

a # bx

→
→

→
→

[–2.5, 2.5] by [–10, 50]

(a)

(–2, 4/9) (–1, 4/3)
(0, 4)

(1, 12)

(2, 36)

[–2.5, 2.5] by [–25, 150]

(b)

(–2, 128)

(–1, 32)

(0, 8)

(1, 2) (2, 1/2)

FIGURE 3.2 Graphs of (a) 
and (b) . (Example 3)h1x2 = 8 # (1/42x

g1x2 = 4 # 3x

Exponential Growth and Decay

For any exponential function and any real number x,

If and , the function f is increasing and is an exponential growth
function. The base b is its growth factor.

If and , f is decreasing and is an exponential decay function. The
base b is its decay factor.

b 6 1a 7 0

b 7 1a 7 0

ƒ1x + 1) = b # ƒ1x2.
ƒ1x2 = a # bx
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In Example 3, g is an exponential growth function, and h is an exponential decay func-
tion. As x increases by 1, grows by a factor of 3, and 
decays by a factor of . Whenever the initial value is positive, the base of an expo-
nential function, like the slope of a linear function, tells us whether the function is in-
creasing or decreasing and by how much.

So far, we have focused most of our attention on the algebraic and numerical aspects of
exponential functions. We now turn our attention to the graphs of these functions.

1/4
h1x2 = 8 # (1/42xg1x2 = 4 # 3x

SECTION 3.1 Exponential and Logistic Functions 255

EXPLORATION 1 Graphs of Exponential Functions
1. Graph each function in the viewing window by .

(a) (b) (c) (d)

• Which point is common to all four graphs?

• Analyze the functions for domain, range, continuity, increasing or decreas-
ing behavior, symmetry, boundedness, extrema, asymptotes, and end 
behavior.

2. Graph each function in the viewing window by .

(a) (b)

(c) (d)

• Which point is common to all four graphs?

• Analyze the functions for domain, range, continuity, increasing or decreasing
behavior, symmetry, boundedness, extrema, asymptotes, and end behavior.

y4 = a1

5
b x

y3 = a1

4
b x

y2 = a1

3
b x

y1 = a1

2
b x

3-1, 643-2, 24

y4 = 5xy3 = 4xy2 = 3xy1 = 2x

3-1, 643-2, 24

We summarize what we have learned about exponential functions with an initial value
of 1.

Domain: All reals
Range:
Continuous
No symmetry: neither even nor odd
Bounded below, but not above
No local extrema
Horizontal asymptote: 
No vertical asymptotes

If (see Figure 3.3a), then

• ƒ is an increasing function,
• and .

If (see Figure 3.3b), then

• ƒ is a decreasing function,
• and .lim

x: q

 ƒ1x2 = 0lim
x: -q

 ƒ1x2 = q

0 6 b 6 1

 lim
x: q

 ƒ1x2 = qƒ1x2 = 0 lim
x: -q

b 7 1

y = 0

10, q2

Exponential Functions ƒ1x2 � bx

y

x

f (x) = bx

b > 1

(0, 1)

(a)

(1, b)

y

x

f (x) = bx

0 < b < 1

(0, 1)

(b)

(1, b)

FIGURE 3.3 Graphs of for (a) and (b) .0 6 b 6 1b 7 1ƒ1x2 = bx
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The translations, reflections, stretches, and shrinks studied in Section 1.5, together with
our knowledge of the graphs of basic exponential functions, allow us to predict the
graphs of the functions in Example 4.

256 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

EXAMPLE 4  Transforming Exponential Functions
Describe how to transform the graph of into the graph of the given func-
tion. Sketch the graphs by hand and support your answer with a grapher.

(a) (b) (c)

SOLUTION

(a) The graph of is obtained by translating the graph of by
1 unit to the right (Figure 3.4a).

(b) We can obtain the graph of by reflecting the graph of 
across the y-axis (Figure 3.4b). Because , we can also
think of h as an exponential function with an initial value of 1 and a base of .

(c) We can obtain the graph of by vertically stretching the graph of
by a factor of 3 (Figure 3.4c). Now try Exercise 15.ƒ1x2 = 2x

k1x2 = 3 # 2x

1/2
2-x

= 12-12x = 11/22x
ƒ1x2 = 2xh1x2 = 2-x

ƒ1x2 = 2xg1x2 = 2x-1

k1x2 = 3 # 2xh1x2 = 2-xg1x2 = 2x-1

ƒ1x2 = 2x

[–4, 4] by [–2, 8]

(a)

[–4, 4] by [–2, 8]

(b)

[–4, 4] by [–2, 8]

(c)

FIGURE 3.4 The graph of shown with (a) , (b) , and (c) . (Example 4)k1x2 = 3 # 2xh1x2 = 2-xg1x2 = 2x-1ƒ1x2 = 2x

The Natural Base e
The function is one of the basic functions introduced in Section 1.3, and is
an exponential growth function.

ƒ1x2 = ex

Domain: All reals
Range: 
Continuous
Increasing for all x
No symmetry
Bounded below, but not above
No local extrema
Horizontal asymptote: 
No vertical asymptotes
End behavior: and  lim

x: q

 ex
= q lim

x: -q

 ex
= 0

y = 0

10, q2
ƒ1x2 = ex

BASIC FUNCTION The Exponential Function

[–4, 4] by [–1, 5]

FIGURE 3.5 The graph of .ƒ1x2 = ex

Because is increasing, it is an exponential growth function, so . But
what is e, and what makes this exponential function the exponential function?

e 7 1ƒ1x2 = ex
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The letter e is the initial of the last name of Leonhard Euler (1707–1783), who intro-
duced the notation. Because has special calculus properties that simplify
many calculations, e is the natural base of exponential functions for calculus purposes,
and is considered the natural exponential function.ƒ1x2 = ex

ƒ1x2 = ex

SECTION 3.1 Exponential and Logistic Functions 257

DEFINITION The Natural Base e

e = lim
x: q

a1 +

1
x
bx

THEOREM Exponential Functions and the Base e

Any exponential function can be rewritten as

for an appropriately chosen real number constant k.

If and is an exponential growth function. (See 
Figure 3.6a.)

If and is an exponential decay function. (See 
Figure 3.6b.)

k 6 0, ƒ1x2 = a # ekxa 7 0

k 7 0, ƒ1x2 = a # ekxa 7 0

ƒ1x2 = a # ekx,

ƒ1x2 = a # bx

We cannot compute the irrational number e directly, but using this definition we can
obtain successively closer approximations to e, as shown in Table 3.4. Continuing the
process in Table 3.4 with a sufficiently accurate computer can show that

.e L 2.718281828459

Table 3.4 Approximations Approaching the Natural Base e

x 1 10 100 1000 10,000 100,000
2 2.5. . . 2.70. . . 2.716. . . 2.7181. . . 2.71826. . .11 + 1/x2x

We are usually more interested in the exponential function and variations of
this function than in the irrational number e. In fact, any exponential function can be
expressed in terms of the natural base e.

ƒ1x2 = ex

y

x

f (x) = ekx

k > 0

(0, 1)

(a)

(1, ek)

y

x

(0, 1)

(b)

(1, ek)

f (x) = ekx

k < 0

FIGURE 3.6 Graphs of for 
(a) and (b) .k 6 0k 7 0

ƒ1x2 = ekx

In Section 3.3 we will develop some mathematics so that, for any positive number
, we can easily find the value of k such that . In the meantime, we can

use graphical and numerical methods to approximate k, as you will discover in Explo-
ration 2.

ekx
= bxb Z 1

EXPLORATION 2 Choosing k so that 

1. Graph in the viewing window by .

2. One at a time, overlay the graphs of for , and
0.8. For which of these values of k does the graph of g most closely match the
graph of ƒ?

3. Using tables, find the 3-decimal-place value of k for which the values of g
most closely approximate the values of ƒ.

k = 0.4, 0.5, 0.6, 0.7g1x2 = ekx

3-2, 843-4, 44ƒ1x2 = 2x

ekx � 2x
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Logistic Functions and Their Graphs
Exponential growth is unrestricted. An exponential growth function increases at an
ever-increasing rate and is not bounded above. In many growth situations, however,
there is a limit to the possible growth. A plant can only grow so tall. The number of
goldfish in an aquarium is limited by the size of the aquarium. In such situations the
growth often begins in an exponential manner, but the growth eventually slows and the
graph levels out. The associated growth function is bounded both below and above by
horizontal asymptotes.

258 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

EXAMPLE 5  Transforming Exponential Functions
Describe how to transform the graph of into the graph of the given func-
tion. Sketch the graphs by hand and support your answer with a grapher.

(a) (b) (c)

SOLUTION

(a) The graph of is obtained by horizontally shrinking the graph of
by a factor of 2 (Figure 3.7a).

(b) We can obtain the graph of by reflecting the graph of 
across the y-axis (Figure 3.7b).

(c) We can obtain the graph of by vertically stretching the graph of
by a factor of 3 (Figure 3.7c). Now try Exercise 21.ƒ1x2 = ex

k1x2 = 3ex

ƒ1x2 = exh1x2 = e-x

ƒ1x2 = ex
g1x2 = e2x

k1x2 = 3exh1x2 = e-xg1x2 = e2x

ƒ1x2 = ex

[–4, 4] by [–2, 8]

(a)

[–4, 4] by [–2, 8]

(b)

[–4, 4] by [–2, 8]

(c)

FIGURE 3.7 The graph of 

shown with (a) , (b) ,
and (c) . (Example 5)k1x2 = 3ex

h1x2 = e-xg1x2 = e2x

ƒ1x2 = ex

If or , these formulas yield logistic decay functions. Unless otherwise
stated, all logistic functions in this book will be logistic growth functions.

By setting , we obtain the logistic function

This function, though related to the exponential function cannot be obtained from 
by translations, reflections, and horizontal and vertical stretches and shrinks. So we
give the logistic function a formal introduction:

exex,

ƒ1x2 =

1

1 + e-x.

a = c = k = 1

k 6 0b 7 1

Aliases for Logistic Growth
Logistic growth is also known as restricted, inhib-
ited, or constrained exponential growth.

DEFINITION Logistic Growth Functions

Let a, b, c, and k be positive constants, with . A logistic growth function
in x is a function that can be written in the form

or 

where the constant c is the limit to growth.

ƒ1x2 =

c

1 + a # e-kxƒ1x2 =

c

1 + a # bx

b 6 1
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All logistic growth functions have graphs much like the basic logistic function. Their
end behavior is always described by the equations

and 

where c is the limit to growth (see Exercise 73). All logistic functions are bounded by
their horizontal asymptotes, and , and have a range of . Although
every logistic function is symmetric about the point of its graph with y- coordinate ,
this point of symmetry is usually not the y-intercept, as we can see in Example 6.

c/2
10, c2y = cy = 0

 lim
x: q

 ƒ1x2 = c, lim
x: -q

 ƒ1x2 = 0

SECTION 3.1 Exponential and Logistic Functions 259

Domain: All reals
Range: 
Continuous
Increasing for all x
Symmetric about , but neither even nor odd
Bounded below and above
No local extrema
Horizontal asymptotes: and 
No vertical asymptotes
End behavior: and lim

x: q

 ƒ1x2 = 1lim
x: -q

 ƒ1x2 = 0

y = 1y = 0

10, 1/22

10, 12

ƒ1x2 =

1

1 + e-x

BASIC FUNCTION The Logistic Function

[–4.7, 4.7] by [–0.5, 1.5]

FIGURE 3.8 The graph of
.ƒ1x2 = 1/11 + e-x2

EXAMPLE 6  Graphing Logistic Growth Functions
Graph the function. Find the y-intercept and the horizontal asymptotes.

(a) (b)

SOLUTION

(a) The graph of is shown in Figure 3.9a. The y-intercept is

Because the limit to growth is 8, the horizontal asymptotes are and .

(b) The graph of is shown in Figure 3.9b. The y-intercept is

Because the limit to growth is 20, the horizontal asymptotes are and 
Now try Exercise 41.

y = 20.y = 0

g102 =

20

1 + 2e-3 #0 =

20

1 + 2
= 20/3 L 6.67.

g1x2 = 20/11 + 2e-3x2
y = 8y = 0

ƒ102 =

8

1 + 3 # 0.70 =

8

1 + 3
= 2.

ƒ1x2 = 8/11 + 3 # 0.7x2

g1x2 =

20

1 + 2e-3xƒ1x2 =

8

1 + 3 # 0.7x
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Population Models
Exponential and logistic functions have many applications. One area where both types
of functions are used is in modeling population. Between 1990 and 2000, both Phoenix
and San Antonio passed the 1 million mark. With its Silicon Valley industries, San
Jose, California, appears to be the next U.S. city destined to surpass 1 million residents.
When a city’s population is growing rapidly, as in the case of San Jose, exponential
growth is a reasonable model.

260 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

[–10, 20] by [–2, 10]

(a)

[–2, 4] by [–5, 25]

(b)

FIGURE 3.9 The graphs of (a) and (b) . (Example 6)g1x2 = 20/(1 + 2e-3x2ƒ1x2 = 8/(1 + 3 # 0.7x2

A Note on Population Data
When the U.S. Census Bureau reports a popula-
tion estimate for a given year, it generally repre-
sents the population at the middle of the year, or
July 1. We will assume this to be the case when
interpreting our results to population problems
unless otherwise noted.

EXAMPLE 7  Modeling San Jose’s Population
Using the data in Table 3.5 and assuming the growth is exponential, when will the
population of San Jose, California, surpass 1 million persons?

SOLUTION

Model Let be the population of San Jose t years after July 1, 2000. (See margin 
note.) Because P is exponential, , where is the initial (2000) popula-
tion of 898,759. From Table 3.5 we see that . So,

and .

Solve Graphically Figure 3.10 shows that this population model intersects
when the independent variable is about 16.73.

Interpret Because 16.73 yr after mid-2000 is in the first half of 2017, according to
this model the population of San Jose will surpass the 1 million mark in early 2017.

Now try Exercise 51.

y = 1,000,000

P1t2 = 898,759 # 1.0064t

b = B7 
939,899

898,759
L 1.0064

P172 = 898759b7
= 939899

P0P1t2 = P0
# bt

P1t2

[–10, 30] by [800 000, 1 100  000]

Intersection
X=16.731494  Y=1000000

FIGURE 3.10 A population model
for San Jose, California. (Example 7)

Source: U.S. Census Bureau.

Table 3.5 The Population of 
San Jose, California

Year Population

2000 898,759
2007 939,899
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While San Jose’s population is soaring, in other major cities, such as Dallas, the popu-
lation growth is slowing. The once sprawling Dallas is now constrained by its neigh-
boring cities. A logistic function is often an appropriate model for restricted growth,
such as the growth that Dallas is experiencing.

SECTION 3.1 Exponential and Logistic Functions 261

EXAMPLE 8  Modeling Dallas’s Population
Based on recent census data, a logistic model for the population of Dallas, t years af-
ter 1900, is as follows:

According to this model, when was the population 1 million?

SOLUTION Figure 3.11 shows that the population model intersects 
when the independent variable is about 84.51. Because 84.51 yr after mid-1900 is at
the beginning of 1985, if Dallas’s population has followed this logistic model, its
population was 1 million then. Now try Exercise 55.

y = 1,000,000

P1t2 =

1,301,642

1 + 21.602e-0.05054t

[0, 120] by [�500 000, 1 500 000]

Intersection
X=84.513263 Y=1000000

FIGURE 3.11 A population model for
Dallas, Texas. (Example 8)

QUICK REVIEW 3.1 (For help, go to Sections A.1 and P.1.)

SECTION 3.1 EXERCISES

In Exercises 1–6, which of the following are exponential functions? For
those that are exponential functions, state the initial value and the base.
For those that are not, explain why not.

1.

2.

3.

4.

5.

6.

In Exercises 7–10, compute the exact value of the function for the given
x-value without using a calculator.

7. for

8. for

9. for

10. ƒ1x2 = 8 # 4x for x = -3/2

x = 1/3ƒ1x2 = -2 # 3x

x = -2ƒ1x2 = 6 # 3x

x = 0ƒ1x2 = 3 # 5x

y = x1.3

y = x2x

y = 42

y = 5x

y = 3x

y = x8

In Exercises 11 and 12, determine a formula for the exponential func-
tion whose values are given in Table 3.6.

11.

12. g1x2
ƒ1x2

Table 3.6 Values for Two 
Exponential Functions

x

6 108
3 36

0 12
1 4
2 4/33/8

3/4
3/2

-1
-2

g1x2ƒ1x2

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, evaluate the expression without using a calculator.

1. 2.

3. 4. 45/2272/3

A3 
125

8
23 -216

In Exercises 5–8, rewrite the expression using a single positive ex-
ponent.

5. 6.

7. 8.

In Exercises 9–10, use a calculator to evaluate the expression.

9. 10. 24 92.352125 -5.37824

1b -32-51a-223
1342-212-324
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In Exercises 13 and 14, determine a formula for the exponential func-
tion whose graph is shown in the figure.

13. 14. g1x2ƒ1x2
In Exercises 31–34, state whether the function is an exponential growth
function or exponential decay function, and describe its end behavior
using limits.

31.

32.

33.

34.

In Exercises 35–38, solve the inequality graphically.

35.

36.

37.

38.

Group Activity In Exercises 39 and 40, use the properties of 
exponents to prove that two of the given three exponential functions are
identical. Support graphically.

39. (a)

(b)

(c)

40. (a)

(b)

(c)

In Exercises 41–44, use a grapher to graph the function. Find the 
y-intercept and the horizontal asymptotes.

41. 42.

43. 44.

In Exercises 45–50, graph the function and analyze it for domain,
range, continuity, increasing or decreasing behavior, symmetry, bound-
edness, extrema, asymptotes, and end behavior.

45. 46.

47. 48.

49. 50.

51. Population Growth Using the midyear data in 
Table 3.7 and assuming the growth is exponential, when did 
the population of Austin surpass 800,000 persons?

ƒ1x2 =

6
1 + 2 # e-xƒ1x2 =

5

1 + 4 # e-2x

ƒ1x2 = 5 # e-xƒ1x2 = 4 # e3x

ƒ1x2 = 4 # 0.5xƒ1x2 = 3 # 2x

g1x2 =

9

1 + 2e-xƒ1x2 =

16

1 + 3e-2x

ƒ1x2 =

18

1 + 5 # 0.2xƒ1x2 =

12

1 + 2 # 0.8x

y3 = 23x-1

y2 = 2123x-22
y1 = 43x-2

y3 = 9x+2

y2 = 32x
+ 4

y1 = 32x+4

a1

3
bx

6 a1

2
b x

a1

4
bx

7 a1

3
b x

6-x
7 8-x

9x
6 4x

ƒ1x2 = 0.75-x

ƒ1x2 = 0.5x

ƒ1x2 = a1
e
bx

ƒ1x2 = 3-2x
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y

x
(0, 3)

(2, 6)y = f(x)

y

x

y = g(x)

b1, 2ea
(0, 2)

In Exercises 15–24, describe how to transform the graph of ƒ into the
graph of g. Sketch the graphs by hand and support your answer with a
grapher.

15. , 

16. , 

17. , 

18. , 

19. , 

20. , 

21. , 

22. , 

23. , 

24. , 

In Exercises 25–30, (a) match the given function with its graph. 
(b) Writing to Learn Explain how to make the choice without 
using a grapher.

25.

26.

27.

28.

29.

30. y = 1.5x
- 2

y = 3-x
- 2

y = -0.5x

y = -2x

y = 2-x

y = 3x

g1x2 = 3e2x
- 1ƒ1x2 = ex

g1x2 = 2e3-3xƒ1x2 = ex

g1x2 = -e-3xƒ1x2 = ex

g1x2 = e-2xƒ1x2 = ex

g1x2 = 2 # 0.63xƒ1x2 = 0.6x

g1x2 = 3 # 0.5x
+ 4ƒ1x2 = 0.5x

g1x2 = 25-xƒ1x2 = 2x

g1x2 = 4-xƒ1x2 = 4x

g1x2 = 3x+4ƒ1x2 = 3x

g1x2 = 2x-3ƒ1x2 = 2x

(a) (b)

(c) (d)

(e) (f)
Source: World Almanac and Book of Facts 2005.

Table 3.7 Populations of Two Major
U.S. Cities

City 1990 Population 2000 Population

Austin, Texas 465,622 656,562
Columbus, Ohio 632,910 711,265
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52. Population Growth Using the data in Table 3.7 and
assuming the growth is exponential, when would the popula-
tion of Columbus surpass 800,000 persons?

53. Population Growth Using the data in Table 3.7 and
assuming the growth is exponential, when were the populations
of Austin and Columbus equal?

54. Population Growth Using the data in Table 3.7 and
assuming the growth is exponential, which city—Austin or
Columbus—would reach a population of 1 million first, and in
what year?

55. Population Growth Using 20th-century U.S. census
data, the population of Ohio can be modeled by

where P is the population in millions and t is the number of
years since April 1, 1900. Based on this model, when was the
population of Ohio 10 million?

56. Population Growth Using 20th-century U.S. census
data, the population of New York state can be modeled by

where P is the population in millions and t is the number of
years since 1800. Based on this model,

(a) What was the population of New York in 1850?

(b) What will New York state’s population be in 2015?

(c) What is New York’s maximum sustainable population
(limit to growth)?

57. Bacteria Growth The number B of bacteria in a petri
dish culture after t hours is given by

(a) What was the initial number of bacteria present?

(b) How many bacteria are present after 6 hours?

58. Carbon Dating The amount C in grams of carbon-14 
present in a certain substance after t years is given by

(a) What was the initial amount of carbon-14 present?

(b) How much is left after 10,400 years? When will the
amount left be 10 g?

Standardized Test Questions
59. True or False Every exponential function is strictly in-

creasing. Justify your answer.

60. True or False Every logistic growth function has two
horizontal asymptotes. Justify your answer.

In Exercises 61–64, solve the problem without using a calculator.

61. Multiple Choice Which of the following functions is 
exponential?

(A) (B)

(C) (D)

(E) ƒ1x2 = 8x

ƒ1x2 = 23 xƒ1x2 = x2/3

ƒ1x2 = x3ƒ1x2 = a2

C = 20e-0.0001216t.

B = 100e0.693t.

P1t2 =

19.875

1 + 57.993e-0.035005t
,

P1t2 =

12.79

1 + 2.402e-0.0309x
,

62. Multiple Choice What point do all functions of the form
have in common?

(A) (B) (C)

(D) (E)

63. Multiple Choice The growth factor for is

(A) 3. (B) 4. (C) 12.

(D) 64. (E) 81.

64. Multiple Choice For , which of the following is
true?

(A) (B) (C)

(D) (E)

Explorations
65. Graph each function and analyze it for domain, range, increas-

ing or decreasing behavior, boundedness, extrema, asymptotes,
and end behavior.

(a) (b)

66. Use the properties of exponents to solve each equation. Sup-
port graphically.

(a) (b)

(c) (d)

Extending the Ideas
67. Writing to Learn Table 3.8 gives function values for

and Also, three different graphs are
shown.

y = g1x2.y = ƒ1x2

9x
= 3x+18x/2

= 4x+1

3x
= 272x

= 42

g1x2 =

e-x

x
ƒ1x2 = x # ex

0.17x
7 0.32x9-x

7 8-x

11/62x 7 (1/22x7x
7 5x3x

7 4x

x 7 0

ƒ1x2 = 4 # 3x

1-1, -1210, 02
10, 1211, 0211, 12

ƒ1x2 = bx1b 7 02
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Table 3.8 Data for Two Functions

x

1.0 5.50 7.40
1.5 5.35 6.97
2.0 5.25 6.44
2.5 5.17 5.76
3.0 5.13 4.90
3.5 5.09 3.82
4.0 5.06 2.44
4.5 5.05 0.71

g1x2ƒ1x2

y

y1

y2

y3
x

(a) Which curve of those shown in the graph most closely 
resembles the graph of ? Explain your choice.

(b) Which curve most closely resembles the graph of 
Explain your choice.

y = g1x2?
y = ƒ1x2
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68. Writing to Learn Let . Explain why the
graph of can be obtained by applying one transfor-
mation to the graph of for an appropriate value of c.
What is c?

Exercises 69–72 refer to the expression . For exam-
ple, if , , and , the expression is ,
an exponential function.

69. If , state conditions on a and c under which the expres-
sion is a quadratic power function.ƒ1a, b, c2

b = x

ƒ12, 3, x2 = 2 # 3xc = xb = 3a = 2
ƒ1a, b, c2 = a # bc

y = cx
ƒ1ax + b2

ƒ1x2 = 2x
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70. If , state conditions on a and c under which the expres-
sion ƒ(a, b, c) is a decreasing linear function.

71. If , state conditions on a and b under which the expres-
sion ƒ(a, b, c) is an increasing exponential function.

72. If , state conditions on a and b under which the expres-
sion ƒ(a, b, c) is a decreasing exponential function.

73. Prove that and ,

for constants a, b, and c, with , , and .c 7 00 6 b 6 1a 7 0

 lim
x: q

 
c

1 + a # bx = c lim
x: -q

 
c

1 + a # bx = 0

c = x

c = x

b = x

6965_CH03_pp251-318.qxd  1/14/10  1:10 PM  Page 264




