
174 CHAPTER 2 Polynomial, Power, and Rational Functions

2.2 Power Functions 
with Modeling

What you’ll learn about
• Power Functions and Variation
• Monomial Functions and Their

Graphs
• Graphs of Power Functions
• Modeling with Power Functions

... and why
Power functions specify the pro-
portional relationships of geom-
etry, chemistry, and physics.

In general, if varies as a constant power of x, then y is a power function of x.
Many of the most common formulas from geometry and science are power functions.

y = ƒ1x2

Name Formula Power Constant of Variation

Circumference 1
Area of a circle 2
Force of gravity k
Boyle’s Law k-1V = k /P

-2F = k /d2
pA = pr 2

2pC = 2pr

EXAMPLE 1  Writing a Power Function Formula
From empirical evidence and the laws of physics it has been found that the period of
time T for the full swing of a pendulum varies as the square root of the pendulum’s
length l, provided that the swing is small relative to the length of the pendulum.
Express this relationship as a power function.

SOLUTION Because it does not state otherwise, the variation is direct. So the
power is positive. The wording tells us that T is a function of l. Using k as the con-
stant of variation gives us

Now try Exercise 17. T1l2 = k1l = k # l 1/2.

Power Functions and Variation
Five of the basic functions introduced in Section 1.3 were power functions. Power
functions are an important family of functions in their own right and are important
building blocks for other functions.

DEFINITION Power Function

Any function that can be written in the form

, where k and a are nonzero constants,

is a power function. The constant a is the power, and k is the constant of
variation, or constant of proportion. We say varies as the power of x,
or is proportional to the power of x.athƒ1x2 athƒ1x2

ƒ1x2 = k # xa

These four power functions involve relationships that can be expressed in the language
of variation and proportion:

• The circumference of a circle varies directly as its radius.

• The area enclosed by a circle is directly proportional to the square of its radius.

• The force of gravity acting on an object is inversely proportional to the square of the
distance from the object to the center of the Earth.

• Boyle’s Law states that the volume of an enclosed gas (at a constant temperature)
varies inversely as the applied pressure.

The power function formulas with positive powers are statements of direct variation,
and power function formulas with negative powers are statements of inverse variation.
Unless the word inversely is included in a variation statement, the variation is assumed
to be direct, as in Example 1.
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Section 1.3 introduced five basic power functions:

and

Example 2 describes two other power functions: the cube root function and the inverse-
square function.

x1/2
= 1xx, x2, x3, x -1

=

1
x

,

[–4.7, 4.7] by [–3.1, 3.1]

(a)

[–4.7, 4.7] by [–3.1, 3.1]

(b)

FIGURE 2.10 The graphs of 
(a) and 
(b) (Example 2)g1x2 = 1/x2

= x -2.
ƒ1x2 = 23 x = x1/3

EXAMPLE 2  Analyzing Power Functions
State the power and constant of variation for the function, graph it, and analyze it.

(a) (b)

SOLUTION

(a) Because , its power is 1/3, and its constant of vari-
ation is 1. The graph of ƒ is shown in Figure 2.10a.

Domain: All reals
Range: All reals
Continuous
Increasing for all x
Symmetric with respect to the origin (an odd function)
Not bounded above or below
No local extrema
No asymptotes
End behavior: and 

Interesting fact: The cube root function is the inverse of the cubing
function.

(b) Because , its power is , and its constant of
variation is 1. The graph of g is shown in Figure 2.10b.

Domain: 
Range: 
Continuous on its domain; discontinuous at 
Increasing on ; decreasing on 
Symmetric with respect to the y-axis (an even function)
Bounded below, but not above
No local extrema

Horizontal asymptote: ; vertical asymptote: 
End behavior: and

Interesting fact: is the basis of scientific inverse-square laws, for
example, the inverse-square gravitational principle mentioned above.

So is sometimes called the inverse-square function, but it is not the
inverse of the squaring function but rather its multiplicative inverse.

Now try Exercise 27.

Monomial Functions and Their Graphs
A single-term polynomial function is a monomial function.

g1x2 = 1/x2

F = k/d2
g1x2 = 1/x2

 lim
x: q

11/x22 = 0 lim
x: -q

11/x22 = 0
x = 0y = 0

10, q21- q , 02 x = 0
10, q21- q , 02h10, q2

-2g1x2 = 1/x2
= x -2

= 1 # x -2

ƒ1x2 = 23 x

 lim
x: q

 23 x = q lim
x: -q

 23 x = - q

ƒ1x2 = 23 x = x1/3
= 1 # x1/3

g1x2 =

1

x2ƒ1x2 = 23 x

DEFINITION Monomial Function

Any function that can be written as

where k is a constant and n is a positive integer, is a monomial function.

ƒ1x2 = k or ƒ1x2 = k # xn,

SECTION 2.2 Power Functions with Modeling 175
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EXPLORATION 1 Comparing Graphs of Monomial Functions

Graph the triplets of functions in the stated windows and explain how the

graphs are alike and how they are different. Consider the relevant aspects of

analysis from Example 2. Which ordered pairs do all three graphs have in

common?

1. , and in the window by
, then by , and finally by .

2. , and in the window by
, then by , and finally by .3-50, 40043-15, 1543-5, 2543-5, 543-0.5, 1.54 3-1.5, 1.54h1x2 = x6ƒ1x2 = x2, g1x2 = x4

3-200, 20043-20, 2043-15, 1543-5, 543-1.5, 1.54 3-2.35, 2.354h1x2 = x5ƒ1x2 = x, g1x2 = x3

From Exploration 1 we see that

is an even function if n is even and an odd function if n is odd.

Because of this symmetry, it is enough to know the first quadrant behavior of 
Figure 2.11 shows the graphs of for in the first quadrant
near the origin.

The following conclusions about the basic function can be drawn from your
investigations in Exploration 1.

ƒ1x2 = x3

n =  1, 2, Á , 6ƒ1x2 = xn
ƒ1x2 = xn.

ƒ1x2 = xn

[0, 1] by [0, 1]

(1, 1)

(0, 0)

x

x2

x3

x4

x5

x6

FIGURE 2.11 The graphs of 
, for n = 1, 2, Á , 6.0 … x … 1

ƒ1x2 = xn,

So the zero function and constant functions are monomial functions, but the more typi-
cal monomial function is a power function with a positive integer power, which is the
degree of the monomial. For example, the basic functions , and are typical
monomial functions. It is important to understand the graphs of monomial functions
because every polynomial function is either a monomial function or a sum of monomial
functions.

In Exploration 1, we take a close look at six basic monomial functions. They have the
form for We group them by even and odd powers.n = 1, 2, Á , 6.xn

x3x, x2

176 CHAPTER 2 Polynomial, Power, and Rational Functions

[–4.7, 4.7] by [–3.1, 3.1]

BASIC FUNCTION The Cubing Function

Domain: All reals
Range: All reals
Continuous
Increasing for all x
Symmetric with respect to the origin (an odd function)
Not bounded above or below
No local extrema
No horizontal asymptotes
No vertical asymptotes
End behavior: and lim

x: q  

x3
= q lim

x: -q

x3
= - q

ƒ1x2 = x3

FIGURE 2.12 The graph of ƒ1x2 = x3.
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SECTION 2.2 Power Functions with Modeling 177

[–2, 2] by [–16, 16]

(a)
[–2, 2] by [–16, 16]

(b)

FIGURE 2.13 The graphs of (a) with basic monomial , and 
(b) with basic monomial (Example 3)g1x2 = x4.ƒ1x2 = -12/32x4

g1x2 = x3ƒ1x2 = 2x3

EXAMPLE 3  Graphing Monomial Functions
Describe how to obtain the graph of the given function from the graph of 
with the same power n. Sketch the graph by hand and support your answer with a
grapher.

(a) (b)

SOLUTION

(a) We obtain the graph of by vertically stretching the graph of 
by a factor of 2. Both are odd functions (Figure 2.13a).

(b) We obtain the graph of by vertically shrinking the graph of 
by a factor of 2/3 and then reflecting it across the x-axis. Both are

even functions (Figure 2.13b). Now try Exercise 31.

We ask you to explore the graphical behavior of power functions of the form and
, where n is a positive integer, in Exercise 65.x1/n

x -n

g1x2 = x4
ƒ1x2 = -12/32x4

g1x2 = x3
ƒ1x2 = 2x3

ƒ1x2 = -  

2

3
 x4ƒ1x2 = 2x3

g1x2 = xn

Graphs of Power Functions
The graphs in Figure 2.14 represent the four shapes that are possible for general power
functions of the form for In every case, the graph of ƒ contains

. Those with positive powers also pass through . Those with negative expo-
nents are asymptotic to both axes.

When , the graph lies in Quadrant I, but when , the graph is in Quadrant IV.

In general, for any power function , one of three following things happens
when 

• ƒ is undefined for , as is the case for and 

• ƒ is an even function, so ƒ is symmetric about the y-axis, as is the case for
and 

• ƒ is an odd function, so ƒ is symmetric about the origin, as is the case for
and 

Predicting the general shape of the graph of a power function is a two-step process as
illustrated in Example 4.

ƒ1x2 = x7/3.ƒ1x2 = x -1

ƒ1x2 = x2/3.ƒ1x2 = x -2

ƒ1x2 = xp.ƒ1x2 = x1/2x 6 0

x 6 0.
ƒ1x2 = k # xa

k 6 0k 7 0

10, 0211, k2 x Ú 0.ƒ1x2 = kxa0 1 32

(a)

x

y

(1, k)

a < 0 a > 1 a = 1

0 < a < 1

0

1 32

(b)

x

y

(1, k)

a < 0 a > 1 a = 1

0 < a < 1

FIGURE 2.14 The graphs of
for (a) , (b) k 6 0.k 7 0x Ú 0.ƒ1x2 = k # xa
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178 CHAPTER 2 Polynomial, Power, and Rational Functions

The following information about the basic function follows from the inves-
tigation in Exercise 65.

ƒ1x2 = 1x

EXAMPLE 4  Graphing Power Functions 
State the values of the constants k and a. Describe the portion of the curve that lies
in Quadrant I or IV. Determine whether ƒ is even, odd, or undefined for 
Describe the rest of the curve if any. Graph the function to see whether it matches
the description.

(a) (b) (c)

SOLUTION

(a) Because is positive and the power is negative, the graph passes
through and is asymptotic to both axes. The graph is decreasing in the
first quadrant. The function ƒ is odd because

So its graph is symmetric about the origin. The graph in Figure 2.15a supports
all aspects of the description.

(b) Because is negative and the power , the graph contains
and passes through In the fourth quadrant, it is decreasing. The

function ƒ is undefined for because

and the square root function is undefined for So the graph of ƒ has no
points in Quadrants II or III. The graph in Figure 2.15b matches the description.

(c) Because is negative and , the graph contains (0, 0) and
passes through In the fourth quadrant, it is decreasing. The function ƒ
is even because

So the graph of ƒ is symmetric about the y-axis. The graph in Figure 2.15c fits
the description. Now try Exercise 43.

 = -125 x22 = -x0.4
= ƒ1x2.

ƒ1-x2 = -1-x20.4
= -1-x22/5

= -125 -x22 = -1- 25 x22
11, -12. 0 6 a 6 1k = -1

x 6 0.

ƒ1x2 = -0.4x1.5
= -  

2

5
 x3/2

= -  

2

5
 11x23,

x 6 0
11, -0.42.10, 02 a = 1.5 7 1k = -0.4

ƒ1-x2 = 21-x2-3
=

2

1-x23 = -

2

x3 = -2x -3
= -ƒ1x2.

11, 22 a = -3k = 2

ƒ1x2 = -x0.4ƒ1x2 = -0.4x1.5ƒ1x2 = 2x -3

x 6 0.

ƒ1x2 = k # xa

[–4.7, 4.7] by [–3.1, 3.1]

(a)

[–4.7, 4.7] by [–3.1, 3.1]

(b)

[–4.7, 4.7] by [–3.1, 3.1]

(c)

FIGURE 2.15 The graphs of (a) , (b) , and (c) (Example 4)ƒ1x2 = -x0.4.ƒ1x2 = -0.4x1.5ƒ1x2 = 2x-3
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Modeling with Power Functions
Noted astronomer Johannes Kepler (1571–1630) developed three laws of planetary 
motion that are used to this day. Kepler’s Third Law states that the square of the period
of orbit T (the time required for one full revolution around the Sun) for each planet is
proportional to the cube of its average distance a from the Sun. Table 2.10 gives the rel-
evant data for the six planets that were known in Kepler’s time. The distances are given
in millions of kilometers, or gigameters (Gm).

EXAMPLE 5  Modeling Planetary Data with a Power Function
Use the data in Table 2.10 to obtain a power function model for orbital period as a
function of average distance from the Sun. Then use the model to predict the orbital
period for Neptune, which is 4497 Gm from the Sun on average.

SOLUTION

Model

First we make a scatter plot of the data, as shown in Figure 2.17a on page 180. Using
power regression, we find the model for the orbital period to be about

Figure 2.17b shows the scatter plot for Table 2.10 together with a graph of the power
regression model just found. You can see that the curve fits the data quite well. The
coefficient of determination is , indicating an amazingly close fit
and supporting the visual evidence.

(continued)

r 2
L 0.999999912

T1a2 L 0.20a1.5
= 0.20a3/2

= 0.202a3.

Table 2.10 Average Distances and Orbital Periods
for the Six Innermost Planets

[–4.7, 4.7] by [–3.1, 3.1]

BASIC FUNCTION The Square Root Function

Domain: 
Range: 
Continuous on 
Increasing on 
No symmetry
Bounded below but not above
Local minimum at 
No horizontal asymptotes
No vertical asymptotes
End behavior: lim

x: q

 1x = q

x = 0

30, q2
30, q2

30, q2
30, q2

ƒ1x2 = 1x

FIGURE 2.16 The graph of ƒ1x2 = 1x.

Source: Shupe, Dorr, Payne, Hunsiker, et al., National Geographic Atlas of
the World (rev. 6th ed.). Washington, DC: National Geographic Society,
1992, plate 116.

Planet
Average Distance Period of 
from Sun (Gm) Orbit (days)

Mercury 57.9 88
Venus 108.2 225
Earth 149.6 365.2
Mars 227.9 687
Jupiter 778.3 4332
Saturn 1427 10,760

A Bit of History
Example 5 shows the predictive power of a well-
founded model. Exercise 67 asks you to find
Kepler’s elegant form of the equation, ,
which he reported in The Harmony of the World
in 1619.

T2
= a3

SECTION 2.2 Power Functions with Modeling 179
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180 CHAPTER 2 Polynomial, Power, and Rational Functions

[–100, 1500] by [–1000, 12000]

(a)

[–100, 1500] by [–1000, 12000]

(b)

[0, 5000] by [–10000, 65000]

Y1=0.2X^1.5

X=4497 Y=60313.472

(c)

FIGURE 2.17 Scatter plot and graphs for Example 5.

EXAMPLE 6  Modeling Free-Fall Speed Versus Distance
Use the data in Table 2.11 to obtain a power function model for speed p versus dis-
tance traveled d. Then use the model to predict the speed of the ball at impact given
that impact occurs when .d L 1.80 m

Solve Numerically

To predict the orbit period for Neptune we substitute its average distance from the
Sun in the power regression model:

Interpret

It takes Neptune about 60,313 days to orbit the Sun, or about 165 years, which is the
value given in the National Geographic Atlas of the World.

Figure 2.17c reports this result and gives some indication of the relative distances in-
volved. Neptune is much farther from the Sun than the six innermost planets and es-
pecially the four closest to the Sun—Mercury, Venus, Earth, and Mars.

Now try Exercise 55.

In Example 6, we return to free-fall motion, with a new twist. The data in the table
come from the same CBR™ experiment referenced in Example 8 of Section 2.1. This
time we are looking at the downward distance (in meters) the ball has traveled since
reaching its peak height and its downward speed (in meters per second). It can be
shown (see Exercise 68) that free-fall speed is proportional to a power of the distance
traveled.

T144972 L 0.21449721.5
L 60,313

Table 2.11 Rubber Ball Data 
from CBR™ Experiment

Distance (m) Speed (m/s)

0.00000 0.00000
0.04298 0.82372
0.16119 1.71163
0.35148 2.45860
0.59394 3.05209
0.89187 3.74200
1.25557 4.49558
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SOLUTION

Model

Figure 2.18a is a scatter plot of the data. Using power regression, we find the model
for speed p versus distance d to be about

(See margin notes.) Figure 2.18b shows the scatter plot for Table 2.11 together with a
graph of the power regression equation just found. You can see that the curve fits the
data nicely. The coefficient of determination is , indicating a close fit
and supporting the visual evidence.

Solve Numerically

To predict the speed at impact, we substitute into the obtained power re-
gression model:

See Figure 2.18c.

Interpret

The speed at impact is about 5.4 m/sec. This is slightly less than the value ob-
tained in Example 8 of Section 2.1, using a different modeling process for the
same experiment. Now try Exercise 57.

p11.802 L 5.4

d L 1.80

r 2
L 0.99770

p1d2 L 4.03d0.5
= 4.03d1/2

= 4.031d.

Why p?
We use p for speed to distinguish it from
velocity v. Recall that speed is the 
absolute value of velocity.

A Word of Warning
The regression routine traditionally used to com-
pute power function models involves taking log-
arithms of the data, and therefore, all of the data
must be strictly positive numbers. So we must
leave out to compute the power regression
equation.

10, 02

[–0.2, 2] by [–1, 6]

(a)

[–0.2, 2] by [–1, 6]

(b)

[–0.2, 2] by [–1, 6]

Y1=4.03X^(1/2)

X=1.8 Y=5.4068124

(c)

FIGURE 2.18 Scatter plot and graphs for Example 6.

QUICK REVIEW 2.2 (For help, go to Section A.1.)

In Exercises 7–10, write the following expressions in the form 
using a single rational number for the power a.

7. 8.

9. 10.
4x

232x3A3   
5

x4

23 8x529x3

k # xaExercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–6, write the following expressions using only posi-
tive integer powers.

1. 2.

3. 4.

5. 6. m -1.5q -4/5

x -7d -2

p5/2x2/3

SECTION 2.2 Power Functions with Modeling 181
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182 CHAPTER 2 Polynomial, Power, and Rational Functions

SECTION 2.2 EXERCISES

In Exercises 1–10, determine whether the function is a power function,
given that c, g, k, and represent constants. For those that are power
functions, state the power and constant of variation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–16, determine whether the function is a monomial
function, given that l and represent constants. For those that are
monomial functions state the degree and leading coefficient. For those
that are not, explain why not.

11. 12.

13. 14.

15. 16.

In Exercises 17–22, write the statement as a power function equation.
Use k for the constant of variation if one is not given.

17. The area A of an equilateral triangle varies directly as the
square of the length s of its sides.

18. The volume V of a circular cylinder with fixed height is pro-
portional to the square of its radius r.

19. The current I in an electrical circuit is inversely proportional to
the resistance R, with constant of variation V.

20. Charles’s Law states the volume V of an enclosed ideal gas at a
constant pressure varies directly as the absolute temperature T.

21. The energy E produced in a nuclear reaction is proportional to
the mass m, with the constant of variation being , the square
of the speed of light.

22. The speed p of a free-falling object that has been dropped from
rest varies as the square root of the distance traveled d, with a
constant of variation 

In Exercises 23–26, write a sentence that expresses the relationship in
the formula, using the language of variation or proportion.

23. , where w and m are the weight and mass of an object
and g is the constant acceleration due to gravity.

24. , where C and D are the circumference and diameter
of a circle and is the usual mathematical constant.

25. , where n is the refractive index of a medium, v is the
velocity of light in the medium, and c is the constant velocity
of light in free space.

26. , where d is the distance traveled by a free-falling
object dropped from rest, p is the speed of the object, and g is
the constant acceleration due to gravity.

d = p2/12g2

n = c/v

p

C = pD

w = mg

k = 12g.

c2

A = lwS = 4pr 2

y = -2 # 5xy = -6x7

ƒ1x2 = 3x -5ƒ1x2 = -4

p

F1a) = m # aI =

k

d2

V =

4

3
 pr 3d =

1

2
 gt 2

KE(v) =

1

2
 kv5E(m) = mc2

ƒ1x2 = 13ƒ1x2 = 3 # 2x

ƒ1x2 = 9x5/3ƒ1x2 = -  

1

2
 x5

p

In Exercises 27–30, state the power and constant of variation for the
function, graph it, and analyze it in the manner of Example 2 of this
section.

27. 28.

29. 30.

In Exercises 31–36, describe how to obtain the graph of the given
monomial function from the graph of with the same power
n. State whether ƒ is even or odd. Sketch the graph by hand and support
your answer with a grapher.

31. 32.

33. 34.

35. 36.

In Exercises 37–42, match the equation to one of the curves labeled in
the figure.

ƒ1x2 =

1

8
 x7ƒ1x2 =

1

4
 x8

ƒ1x2 = -2x6ƒ1x2 = -1.5x5

ƒ1x2 = 5x3ƒ1x2 =

2

3
 x4

g1x2 = xn

ƒ1x2 = -2x -3ƒ1x2 =

1

2
24 x

ƒ1x2 = -3x3ƒ1x2 = 2x4

y

x

a

h

b

g

c

d

f

e

37. 38.

39. 40.

41. 42.

In Exercises 43–48, state the values of the constants k and a for the
function Before using a grapher, describe the portion of
the curve that lies in Quadrant I or IV. Determine whether ƒ is even,
odd, or undefined for Describe the rest of the curve if any.
Graph the function to see whether it matches the description.

43. 44.

45. 46.

47. 48. ƒ1x2 = -x -4ƒ1x2 =

1

2
 x -3

ƒ1x2 =

2

5
 x5/2ƒ1x2 = -2x4/3

ƒ1x2 = -4x2/3ƒ1x2 = 3x1/4

x 6 0.

ƒ1x2 = k # xa.

ƒ1x2 = 1.7x2/3ƒ1x2 = -2x -2

ƒ1x2 = -x5/3ƒ1x2 = 2x1/4

ƒ1x2 =

1

2
 x -5ƒ1x2 = -  

2

3
 x4
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In Exercises 49 and 50, data are given for y as a power function of x.
Write an equation for the power function, and state its power and
constant of variation.

49.

50.

51. Boyle’s Law The volume of an enclosed gas (at a con-
stant temperature) varies inversely as the pressure. If the pres-
sure of a 3.46-L sample of neon gas at a temperature of 302 K
is 0.926 atm, what would the volume be at a pressure of 1.452
atm if the temperature does not change?

52. Charles’s Law The volume of an enclosed gas (at a con-
stant pressure) varies directly as the absolute temperature. If
the pressure of a 3.46-L sample of neon gas at a temperature of
302 K is 0.926 atm, what would the volume be at a temperature
of 338 K if the pressure does not change?

53. Diamond Refraction Diamonds have the extremely
high refraction index of on average over the range of
visible light. Use the formula from Exercise 25 and the fact
that to determine the speed of light
through a diamond.

54. Windmill Power The power P (in watts) produced by a
windmill is proportional to the cube of the wind speed v (in
mph). If a wind of 10 mph generates 15 watts of power, how
much power is generated by winds of 20, 40, and 80 mph?
Make a table and explain the pattern.

55. Keeping Warm For mammals and other warm-blooded
animals to stay warm requires quite a bit of energy. Tempera-
ture loss is related to surface area, which is related to body
weight, and temperature gain is related to circulation, which is
related to pulse rate. In the final analysis, scientists have con-
cluded that the pulse rate r of mammals is a power function of
their body weight w.

(a) Draw a scatter plot of the data in Table 2.12.

(b) Find the power regression model.

(c) Superimpose the regression curve on the scatter plot.

c L 3.00 * 108 m/sec

n = 2.42

(d) Use the regression model to predict the pulse rate for a
450-kg horse. Is the result close to the 38 beats/min re-
ported by A. J. Clark in 1927?

56. Even and Odd Functions If n is an integer, ,
prove that is an odd function if n is odd and is an
even function if n is even.

57. Light Intensity Velma and Reggie gathered the data in
Table 2.13 using a 100-watt light bulb and a Calculator-Based
Laboratory™ (CBL™) with a light-intensity probe.

(a) Draw a scatter plot of the data in Table 2.13

(b) Find the power regression model. Is the power close to the
theoretical value of 

(c) Superimpose the regression curve on the scatter plot.

(d) Use the regression model to predict the light intensity at
distances of 1.7 m and 3.4 m.

a = -2?

ƒ1x2 = xn
n Ú 1
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x 1 4 9 16 25

y -10-8-6-4-2

x 2 4 6 8 10

y 2 0.5 0.222... 0.125 0.08

Source: A. J. Clark, Comparative Physiology of the Heart.
New York: Macmillan, 1927.

Table 2.12 Weight and Pulse Rate 
of Selected Mammals

Mammal Body Weight (kg)
Pulse Rate 
(beats/min)

Rat 0.2 420
Guinea pig 0.3 300
Rabbit 2 205
Small dog 5 120
Large dog 30 85
Sheep 50 70
Human 70 72

Table 2.13 Light-Intensity Data 
for a 100-W Light Bulb

Distance Intensity 
(m) ( )

1.0 7.95
1.5 3.53
2.0 2.01
2.5 1.27
3.0 0.90

W/m2

Standardized Test Questions
58. True or False The function is even. Justify

your answer.

59. True or False The graph is symmetric
about the y-axis. Justify your answer.

In Exercises 60–63, solve the problem without using a calculator.

60. Multiple Choice Let What is the value
of ƒ(4)?

(A) 1 (B) (C) (D) (E) 4

61. Multiple Choice Let Which of the fol-
lowing statements is true?

(A) (B) (C)

(D) (E) is undefined.

62. Multiple Choice Let Which of the follow-
ing statements is true?

(A) ƒ is an odd function.

(B) ƒ is an even function.

(C) ƒ is neither an even nor an odd function.

(D) The graph ƒ is symmetric with respect to the x-axis.

(E) The graph ƒ is symmetric with respect to the origin.

ƒ1x2 = x2/3.

ƒ102ƒ132 = 3

ƒ112 = 1ƒ1-12 = -3ƒ102 = 0

ƒ1x2 = -3x -1/3.

1

212
212-1

ƒ1x2 = 2x -1/2.

ƒ1x2 = x1/3

ƒ1x2 = x -2/3
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63. Multiple Choice Which of the following is the domain
of the function 

(A) All reals (B) (C)

(D) (E)

Explorations
64. Group Activity Rational Powers Working in a

group of three students, investigate the behavior of power func-
tions of the form , where m and n are positive
with no factors in common. Have one group member investi-
gate each of the following cases:

• n is even

• n is odd and m is even

• n is odd and m is odd

For each case, decide whether ƒ is even, ƒ is odd, or ƒ is unde-
fined for Solve graphically and confirm algebraically in
a way to convince the rest of your group and your entire class.

65. Comparing the Graphs of Power Functions
Graph the functions in the stated windows and explain how the
graphs are alike and how they are different. Consider the rele-
vant aspects of analysis from Example 2. Which ordered pairs
do all four graphs have in common?

(a) in
the windows by , by , and 
by 

(b) , and in
the windows by , by , and 
by 

Extending the Ideas
66. Writing to Learn Irrational Powers A negative

number to an irrational power is undefined. Analyze the graphs
of , and Prepare a
sketch of all six graphs on one set of axes, labeling each of the
curves. Write an explanation for why each graph is positioned
and shaped as it is.

-x -p.ƒ1x2 = xp, x1/p, x -p, -xp, -x1/p

3-2, 24.
3-3, 3430, 2430, 3430, 1430, 14

k1x2 = x1/5ƒ1x2 = x1/2, g1x2 = x1/3, h1x2 = x1/4

3-2, 24.
3-2, 2430, 3430, 3430, 5430, 14

ƒ1x2 = x -1, g1x2 = x -2, h1x2 = x -3, and k1x2 = x -4

x 6 0.

ƒ1x2 = k # xm/n

1- q ,02 h  10,q21- q ,02
10,q230,q2

ƒ1x2 = x3/2?
67. Planetary Motion Revisited Convert the time and

distance units in Table 2.10 to the Earth-based units of years
and astronomical units using

Use this “re-expressed” data to obtain a power function model.
Show algebraically that this model closely approximates
Kepler’s equation 

68. Free Fall Revisited The speed p of an object is the 
absolute value of its velocity v. The distance traveled d by an
object dropped from an initial height with a current height s
is given by

until it hits the ground. Use this information and the free-fall
motion formulas from Section 2.1 to prove that

Do the results of Example 6 approximate this last formula?

69. Prove that is even if and only if ƒ(x) is even and
that is odd if and only if ƒ(x) is odd.

70. Use the results in Exercise 69 to prove that is even
if and only if is even and that is odd if
and only if is odd.

71. Joint Variation If a variable z varies as the product of
the variables x and y, we say z varies jointly as x and y, and we
write , where k is the constant of variation. Write a
sentence that expresses the relationship in each of the follow-
ing formulas, using the language of joint variation.

(a) , where F and a are the force and acceleration
acting on an object of mass m.

(b) , where KE and v are the kinetic energy
and velocity of an object of mass m.

(c) , where F is the force of gravity acting
on objects of masses and with a distance r between
their centers and G is the universal gravitational constant.

m2m1

F = G # m1
# m2/r 2

KE = 11/22m # v2

F = m # a

z = k # x # y

ƒ1x2 = xa
g1x2 = x -aƒ1x2 = xa

g1x2 = x -a

g1x2 = 1/ƒ1x2
g1x2 = 1/ƒ1x2

d =

1

2
 gt 2, p = gt, and therefore p = 12gd.

d = s0 - s

s0

T2
= a3.

1 yr = 365.2 days and 1 AU = 149.6 Gm.
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