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and Rational Functions

Humidity and relative humidity are measures used by weather forecast-
ers. Humidity affects our comfort and our health. If humidity is too low,
our skin can become dry and cracked, and viruses can live longer. If 
humidity is too high, it can make warm temperatures feel even warmer,
and mold, fungi, and dust mites can live longer. See page 224 to learn
how relative humidity is modeled as a rational function.
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2.3 Polynomial Functions 
of Higher Degree 
with Modeling

2.4 Real Zeros of Polynomial
Functions

2.5 Complex Zeros and the
Fundamental Theorem 
of Algebra

2.6 Graphs of Rational 
Functions

2.7 Solving Equations in 
One Variable

2.8 Solving Inequalities 
in One Variable

CHAPTER 2

6965_CH02_pp157-250.qxd  1/14/10  1:13 PM  Page 157



158 CHAPTER 2 Polynomial, Power, and Rational Functions

Chapter 2 Overview
Chapter 1 laid a foundation of the general characteristics of functions, equations, and
graphs. In this chapter and the next two, we will explore the theory and applications of
specific families of functions. We begin this exploration by studying three interrelated
families of functions: polynomial, power, and rational functions. These three families
of functions are used in the social, behavioral, and natural sciences.

This chapter includes a thorough study of the theory of polynomial equations. We in-
vestigate algebraic methods for finding both real- and complex-number solutions of
such equations and relate these methods to the graphical behavior of polynomial and
rational functions. The chapter closes by extending these methods to inequalities in one
variable.

2.1 Linear and Quadratic 
Functions and Modeling

What you’ll learn about
• Polynomial Functions
• Linear Functions and Their

Graphs
• Average Rate of Change
• Linear Correlation and 

Modeling
• Quadratic Functions and 

Their Graphs
• Applications of Quadratic 

Functions

... and why
Many business and economic
problems are modeled by lin-
ear functions. Quadratic and
higher-degree polynomial func-
tions are used in science and
manufacturing applications.

Polynomial Functions
Polynomial functions are among the most familiar of all functions.

Polynomial functions are defined and continuous on all real numbers. It is important to
recognize whether a function is a polynomial function.

EXAMPLE 1  Identifying Polynomial Functions
Which of the following are polynomial functions? For those that are polynomial
functions, state the degree and leading coefficient. For those that are not, explain
why not.

(a) (b)

(c) (d)

SOLUTION

(a) ƒ is a polynomial function of degree 3 with leading coefficient 4.

(b) g is not a polynomial function because of the exponent .

(c) h is not a polynomial function because it cannot be simplified into polynomial
form. Notice that 

(d) k is a polynomial function of degree 4 with leading coefficient 
Now try Exercise 1.

-2.

29x4
+ 16x2

Z 3x2
+ 4x.

-4

k1x2 = 15x - 2x4h1x2 = 29x4
+ 16x2

g1x2 = 6x -4
+ 7ƒ1x2 = 4x3

- 5x -

1

2

DEFINITION Polynomial Function

Let n be a nonnegative integer and let be real numbers
with The function given by

is a polynomial function of degree n. The leading coefficient is 

The zero function is a polynomial function. It has no degree and no
leading coefficient.

ƒ(x) = 0

an.

ƒ(x) = an x
n

+ an-1xn-1
+

Á
+ a2x2

+ a1x + a0

an Z 0.
a0, a1, a2, Á , an-1, an
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Polynomial Functions of No and Low Degree

Name Form Degree

Zero function Undefined

Constant function 0

Linear function 1

Quadratic function 2ƒ1x2 = ax2
+ bx + c 1a Z 02

ƒ1x2 = ax + b 1a Z 02
ƒ1x2 = a 1a Z 02
ƒ1x2 = 0

The zero function and all constant functions are polynomial functions. Some other fa-
miliar functions are also polynomial functions, as shown below.

EXAMPLE 2  Finding an Equation of a Linear Function
Write an equation for the linear function ƒ such that and 

SOLUTION

Solve Algebraically

We seek a line through the points and The slope is

Using this slope and the coordinates of with the point-slope formula, we have

Converting to function notation gives us the desired form:

(continued)
ƒ1x2 = -x + 1

 y = -x + 1

 y - 2 = -x - 1

 y - 2 = -11x - 1-122
y - y1 = m1x - x12

(-1, 2)

m =

y2 - y1

x2 - x1
=

1-22 - 2

3 - 1-12 =

-4

4
= -1.

13, -22.1-1, 22

ƒ132 = -2.ƒ1-12 = 2

Surprising Fact
Not all lines in the Cartesian plane are graphs of
linear functions.

We study polynomial functions of degree 3 and higher in Section 2.3. For the remain-
der of this section, we turn our attention to the nature and uses of linear and quadratic
polynomial functions.

Linear Functions and Their Graphs
Linear equations and graphs of lines were reviewed in Sections P.3 and P.4, and some
of the examples in Chapter 1 involved linear functions. We now take a closer look at the
properties of linear functions.

A linear function is a polynomial function of degree 1 and so has the form

If we use m for the leading coefficient instead of a and let , then this equation
becomes the familiar slope-intercept form of a line:

Vertical lines are not graphs of functions because they fail the vertical line test, and hori-
zontal lines are graphs of constant functions. A line in the Cartesian plane is the graph of a
linear function if and only if it is a slant line, that is, neither horizontal nor vertical. We
can apply the formulas and methods of Section P.4 to problems involving linear functions.

y = mx + b

y = ƒ1x2
ƒ1x2 = ax + b, where a and b are constants and a Z 0.

SECTION 2.1 Linear and Quadratic Functions and Modeling 159
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THEOREM Constant Rate of Change

A function defined on all real numbers is a linear function if and only if it has a
constant nonzero average rate of change between any two points on its graph.

160 CHAPTER 2 Polynomial, Power, and Rational Functions

Support Graphically

We can graph and see that it includes the points and 
(Figure 2.1).

Confirm Numerically

Using we prove that and :

Now try Exercise 7.
ƒ1-12 = -1-12 + 1 = 1 + 1 = 2, and ƒ132 = -132 + 1 = -3 + 1 = -2.

ƒ132 = -2ƒ1-12 = 2ƒ1x2 = -x + 1

13, -221-1, 22y = -x + 1
3
2
1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

(–1, 2)

(3, –2)

FIGURE 2.1 The graph of 
passes through and 
(Example 2)

13, -22.1-1, 22
y = -x + 1

Average Rate of Change
Another property that characterizes a linear function is its rate of change. The average
rate of change of a function between and , , is

You are asked to prove the following theorem in Exercise 85.

ƒ1b2 - ƒ1a2
b - a

.

a Z bx = bx = ay = ƒ1x2

Because the average rate of change of a linear function is constant, it is called simply
the rate of change of the linear function. The slope m in the formula 
is the rate of change of the linear function. In Exploration 1, we revisit Example 7 of
Section P.4 in light of the rate of change concept.

ƒ1x2 = mx + b

EXPLORATION 1 Modeling Depreciation with a Linear Function

Camelot Apartments bought a $50,000 building and for tax purposes are depre-

ciating it $2000 per year over a 25-yr period using straight-line depreciation.

1. What is the rate of change of the value of the building?

2. Write an equation for the value of the building as a linear function of the
time t since the building was placed in service.

3. Evaluate and 

4. Solve . v1t2 = 39,000

v1162.v102
v1t2

The rate of change of a linear function is the signed ratio of the corresponding line’s
rise over run. That is, for a linear function ,

This formula allows us to interpret the slope, or rate of change, of a linear function nu-
merically. For instance, in Exploration 1 the value of the apartment building fell from
$50,000 to $0 over a 25-yr period. In Table 2.1 we compute for the apartment
building’s value (in dollars) as a function of time (in years). Because the average rate of
change is the nonzero constant , the building’s value is a linear function
of time decreasing at a rate of $2000/yr.

-2000¢y/¢x

¢y/¢x

rate of change = slope = m =

rise
run

=

change in y

change in x
=

¢y

¢x
.

ƒ1x2 = mx + b
Rate and Ratio
All rates are ratios, whether expressed as miles
per hour, dollars per year, or even rise over run.
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Characterizing the Nature of a Linear Function

Point of View Characterization

Verbal polynomial of degree 1

Algebraic

Graphical slant line with slope m and y-intercept b

Analytical function with constant nonzero rate of change m: 
ƒ is increasing if , decreasing if ; 
initial value of the function = ƒ102 = b

m 6 0m 7 0

ƒ(x) = mx + b 1m Z 02

SECTION 2.1 Linear and Quadratic Functions and Modeling 161

Table 2.1 Rate of Change of the Value of the Apartment 
Building in Exploration 1: 

x (time) y (value)

0 50,000
1

1 48,000
1

2 46,000
1

3 44,000
1

4 42,000
-2000-2000

-2000-2000

-2000-2000

-2000-2000

¢y/¢x¢y¢x

y � �2000x � 50,000

In Exploration 1, as in other applications of linear functions, the constant term repre-
sents the value of the function for an input of 0. In general, for any function is the
initial value of ƒ. So for a linear function , the constant term b is the ini-
tial value of the function. For any polynomial function ,
the constant term is the function’s initial value. Finally, the initial value of
any function—polynomial or otherwise—is the y-intercept of its graph.

We now summarize what we have learned about linear functions.

ƒ102 = a0

ƒ1x2 = anxn
+

Á
+ a1x + a0

ƒ1x2 = mx + b
ƒ, ƒ102

Linear Correlation and Modeling
In Section 1.7 we approached modeling from several points of view. Along the way we
learned how to use a grapher to create a scatter plot, compute a regression line for a
data set, and overlay a regression line on a scatter plot. We touched on the notion of
correlation coefficient. We now go deeper into these modeling and regression concepts.

Figure 2.2 on page 162 shows five types of scatter plots. When the points of a scatter
plot are clustered along a line, we say there is a linear correlation between the quanti-
ties represented by the data. When an oval is drawn around the points in the scatter plot,
generally speaking, the narrower the oval, the stronger the linear correlation.

When the oval tilts like a line with positive slope (as in Figure 2.2a and b), the data
have a positive linear correlation. On the other hand, when it tilts like a line with neg-
ative slope (as in Figure 2.2d and e), the data have a negative linear correlation. Some
scatter plots exhibit little or no linear correlation (as in Figure 2.2c), or have nonlinear
patterns.
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Correlation informs the modeling process by giving us a measure of goodness of fit.
Good modeling practice, however, demands that we have a theoretical reason for se-
lecting a model. In business, for example, fixed cost is modeled by a constant function.
(Otherwise, the cost would not be fixed.)

In economics, a linear model is often used for the demand for a product as a function of
its price. For instance, suppose Twin Pixie, a large supermarket chain, conducts a mar-
ket analysis on its store brand of doughnut-shaped oat breakfast cereal. The chain sets
various prices for its 15-oz box at its different stores over a period of time. Then, using
these data, the Twin Pixie researchers predict the weekly sales at the entire chain of
stores for each price and obtain the data shown in Table 2.2.

Properties of the Correlation Coefficient, r

1.

2. When , there is a positive linear correlation.

3. When , there is a negative linear correlation.

4. When , there is a strong linear correlation.

5. When , there is weak or no linear correlation.r L 0

ƒ r ƒ L 1

r 6 0

r 7 0

-1 … r … 1.
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y

x
10 20 30 40 50

50

40

30

20

10

Strong positive linear
correlation

(a)

y

x
10 20 30 40 50

50

40

30

20

10

y

x
10 20 30 40 50

50

40

30

20

10

Weak positive linear
correlation

Little or no linear
correlation

(b) (c)

y

x
10 20 30 40 50

50

40

30

20

10

Strong negative linear
correlation

(d)

y

x
10 20 30 40 50

50

40

30

20

10

Weak negative linear
correlation

(e)

FIGURE 2.2 Five scatter plots and the types of linear correlation they suggest.

Correlation vs. Causation
Correlation does not imply causation. Two vari-
ables can be strongly correlated, but that does
not necessarily mean that one causes the other.

A number that measures the strength and direction of the linear correlation of a data set
is the (linear) correlation coefficient, r.
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Regression Analysis

1. Enter and plot the data (scatter plot).

2. Find the regression model that fits the problem situation.

3. Superimpose the graph of the regression model on the scatter plot, and ob-
serve the fit.

4. Use the regression model to make the predictions called for in the problem.

SECTION 2.1 Linear and Quadratic Functions and Modeling 163

EXAMPLE 3  Modeling and Predicting Demand
Use the data in Table 2.2 to write a linear model for demand (in boxes sold per week)
as a function of the price per box (in dollars). Describe the strength and direction of
the linear correlation. Then use the model to predict weekly cereal sales if the price
is dropped to $2.00 or raised to $4.00 per box.

SOLUTION

Model

We enter the data and obtain the scatter plot shown in Figure 2.3a. It appears that the
data have a strong negative correlation.

We then find the linear regression model to be approximately

where x is the price per box of cereal and y the number of boxes sold.

Figure 2.3b shows the scatter plot for Table 2.2 together with a graph of the regres-
sion line. You can see that the line fits the data fairly well. The correlation coefficient
of supports this visual evidence.

Solve Graphically

Our goal is to predict the weekly sales for prices of $2.00 and $4.00 per box. Using
the value feature of the grapher, as shown in Figure 2.3c, we see that y is about
42,900 when x is 2. In a similar manner we could find that when x is 4.

Interpret

If Twin Pixie drops the price for its store brand of doughnut-shaped oat breakfast ce-
real to $2.00 per box, demand will rise to about 42,900 boxes per week. On the other
hand, if they raise the price to $4.00 per box, demand will drop to around 12,190
boxes per week. Now try Exercise 49.

We summarize for future reference the analysis used in Example 3.

y L 12,190

r L -0.98

y = -15,358.93x + 73,622.50,

[2, 4] by [10000, 40000]

(a)

[2, 4] by [10000, 40000]

(b)

[0, 5] by [–10000, 80000]

(c)

X=2 Y=42904.643

FIGURE 2.3 Scatter plot and regression
line graphs for Example 3.

Table 2.2 Weekly Sales Data Based
on Marketing Research

Price per Box Boxes Sold

$2.40 38,320
$2.60 33,710
$2.80 28,280
$3.00 26,550
$3.20 25,530
$3.40 22,170
$3.60 18,260
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vertex

axis

(a)

f(x) = ax2, a > 0

vertex

axis

(b)

f(x) = ax2, a < 0

FIGURE 2.5 The graph for (a) and (b) a 6 0.a 7 0ƒ1x2 = ax2

EXAMPLE 4  Transforming the Squaring Function
Describe how to transform the graph of into the graph of the given func-
tion. Sketch its graph by hand.

(a) (b)

SOLUTION

(a) The graph of is obtained by vertically shrinking the 
graph of by a factor of 1/2, reflecting the resulting graph across the
x-axis, and translating the reflected graph up 3 units (Figure 2.4a).

(b) The graph of is obtained by vertically stretching the 
graph of by a factor of 3 and translating the resulting graph left 2 units
and down 1 unit (Figure 2.4b). Now try Exercise 19.

ƒ1x2 = x2
h1x2 = 31x + 222 - 1

ƒ1x2 = x2
g1x2 = -11/22x2

+ 3

h1x2 = 31x + 222 - 1g1x2 = -11/22x2
+ 3

ƒ1x2 = x2

164 CHAPTER 2 Polynomial, Power, and Rational Functions

y

(a)

5

–5

–5
x

5

y

(b)

5

–5

–5
x

5

FIGURE 2.4 The graph of 
(blue) shown with 

(a) and 
(b) (Example 4)h1x2 = 31x + 222 - 1.

g1x2 = -11/22x2
+ 3

ƒ1x2 = x2

Quadratic Functions and Their Graphs
A quadratic function is a polynomial function of degree 2. Recall from Section 1.3 that
the graph of the squaring function is a parabola. We will see that the graph of
every quadratic function is an upward- or downward-opening parabola. This is because
the graph of any quadratic function can be obtained from the graph of the squaring func-
tion by a sequence of translations, reflections, stretches, and shrinks.ƒ1x2 = x2

ƒ1x2 = x2

The graph of , is an upward-opening parabola. When , its
graph is a downward-opening parabola. Regardless of the sign of a, the y-axis is the
line of symmetry for the graph of The line of symmetry for a parabola is
its axis of symmetry, or axis for short. The point on the parabola that intersects its axis
is the vertex of the parabola. Because the graph of a quadratic function is always an up-
ward- or downward-opening parabola, its vertex is always the lowest or highest point of
the parabola. The vertex of is always the origin, as seen in Figure 2.5.ƒ1x2 = ax2

ƒ1x2 = ax2.

a 6 0ƒ1x2 = ax2, a 7 0

Expanding and comparing the resulting coefficients with the
standard quadratic form , where the powers of x are arranged in de-
scending order, we can obtain formulas for h and k.

Expand 

Distributive property

Let and c = ah2
+ k.b = -2ah = ax2

+ bx + c

 = ax2
+ 1-2ah2x + 1ah2

+ k2
1x - h23. = a1x2

- 2hx + h22 + k

ƒ1x2 = a1x - h22 + k

ax2
+ bx + c

ƒ1x2 = a1x - h22 + k
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EXAMPLE 5  Finding the Vertex and Axis of a 
Quadratic Function

Use the vertex form of a quadratic function to find the vertex and axis of the graph of
Rewrite the equation in vertex form.

SOLUTION

Solve Algebraically

The standard polynomial form of ƒ is

So , and , and the coordinates of the vertex are

The equation of the axis is , the vertex is , and the vertex form of ƒ is

Now try Exercise 27.ƒ1x2 = -31x - 122 + 1-22.
11, -22x = 1

 k = ƒ1h2 = ƒ112 = -31122 + 6112 - 5 = -2.

h = -  

b

2a
= -  

6

21-32 = 1 and

c = -5a = -3, b = 6

ƒ1x2 = -3x2
+ 6x - 5.

ƒ1x2 = 6x - 3x2
- 5.

The formula is useful for locating the vertex and axis of the parabola as-
sociated with a quadratic function. To help you remember it, notice that is part
of the quadratic formula

(Cover the radical term.) You need not remember because you can use
instead, as illustrated in Example 5.k = ƒ1h2 k = c - ah2

x =

-b � 2b2
- 4ac

2a
.

-b/12a2h = -b/12a2

Because in the last line above, and
Using these formulas, any quadratic function can

be rewritten in the form

This vertex form for a quadratic function makes it easy to identify the vertex and axis of
the graph of the function, and to sketch the graph.

ƒ1x2 = a1x - h22 + k.

ƒ1x2 = ax2
+ bx + ck = c - ah2.

h = -b/12a2b = -2ah and c = ah2
+ ky

x

y = ax2 + bx + c

, a > 0x = – b
2a

(a)

y

x

y = ax2 + bx + c

, a < 0x = – b
2a

(b)

FIGURE 2.6 The vertex is at 
which therefore also describes the axis of
symmetry. (a) When , the parabola
opens upward. (b) When , the parabola
opens downward.

a 6 0
a 7 0

x = -b/12a2,

Vertex Form of a Quadratic Function

Any quadratic function , can be written in the
vertex form

The graph of ƒ is a parabola with vertex (h, k) and axis , where
and If , the parabola opens upward, 

and if , it opens downward (Figure 2.6).a 6 0
a 7 0k = c - ah2.h = -b/12a2 x = h

ƒ1x2 = a1x - h22 + k.

ƒ(x) = ax2
+ bx + c, a Z 0

SECTION 2.1 Linear and Quadratic Functions and Modeling 165
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Characterizing the Nature of a Quadratic Function

Point of View Characterization

Verbal polynomial of degree 2

Algebraic or 

Graphical parabola with vertex and axis ; 
opens upward if , opens downward if 
initial ;

x-intercepts =

-b � 2b2
- 4ac

2a

value = y-intercept = ƒ102 = c
a 6 0;a 7 0

x = h1h, k2
ƒ1x2 = a1x - h22 + k 1a Z 02
ƒ1x2 = ax2

+ bx + c

Applications of Quadratic Functions
In economics, when demand is linear, revenue is quadratic. Example 7 illustrates this
by extending the Twin Pixie model of Example 3.

166 CHAPTER 2 Polynomial, Power, and Rational Functions

EXAMPLE 7  Predicting Maximum Revenue
Use the model from Example 3 to develop a model
for the weekly revenue generated by doughnut-shaped oat breakfast cereal sales.
Determine the maximum revenue and how to achieve it.

SOLUTION

Model

Revenue can be found by multiplying the price per box, x, by the number of boxes
sold, y. So the revenue is given by

a quadratic model.

R1x2 = x # y = -15,358.93x2
+ 73,622.50x,

y = -15,358.93x + 73,622.50

[–4.7, 4.7] by [–3.1, 3.1]

X=–2 Y=–1

FIGURE 2.7 The graphs of 
and appear 

to be identical. The vertex is 
highlighted. (Example 6)

1-2, -12
y = 31x + 222 - 112x + 11

ƒ1x2 = 3x2
+

EXAMPLE 6  Using Algebra to Describe the Graph of a 
Quadratic Function

Use completing the square to describe the graph of 
Support your answer graphically.

SOLUTION

Solve Algebraically

Factor 3 from the x-terms.

Prepare to complete the square.

Complete the square.

Distribute the 3.

The graph of ƒ is an upward-opening parabola with vertex , axis of symme-
try . (The x-intercepts are , or about )

Support Graphically

The graph in Figure 2.7 supports these results. Now try Exercise 33.

We now summarize what we know about quadratic functions.

-2.577 and -1.423.x = -2 � 13/3x = -2
1-2, -12

 = 31x + 222 - 1

 = 31x2
+ 4x + 42 - 3142 + 11

 = 31x2
+ 4x + 1222 - 12222 + 11

 = 31x2
+ 4x + 12 - 122 + 11

 = 31x2
+ 4x2 + 11

ƒ1x2 = 3x2
+ 12x + 11

ƒ1x2 = 3x2
+ 12x + 11.
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These formulas disregard air resistance, and the two values given for g are valid at sea
level. We apply these formulas in Example 8, and will use them from time to time
throughout the rest of the book.

The data in Table 2.3 were collected in Boone, North Carolina (about 1 km above sea
level), using a Calculator-Based Ranger™ (CBR™) and a 15-cm rubber air-filled ball.
The CBR™ was placed on the floor face up. The ball was thrown upward above the
CBR™, and it landed directly on the face of the device.

SECTION 2.1 Linear and Quadratic Functions and Modeling 167

EXAMPLE 8  Modeling Vertical Free-Fall Motion
Use the data in Table 2.3 to write models for the height and vertical velocity of the
rubber ball. Then use these models to predict the maximum height of the ball and its
vertical velocity when it hits the face of the CBR™.

SOLUTION

Model

First we make a scatter plot of the data, as shown in Figure 2.9a. Using quadratic re-
gression, we find the model for the height of the ball to be about

with , indicating an excellent fit.

Our free-fall theory says the leading coefficient of is , giving us a value
for , which is a bit less than the theoretical value of We
also obtain So the model for vertical velocity becomes

(continued)
v1t2 = -gt + v0 L -9.352t + 3.758.

v0 L 3.758 m/sec.
9.8 m/sec2.g L 9.352 m/sec2

-g/2-4.676

R2
L 0.999

s1t2 = -4.676t 2
+ 3.758t + 1.045,

Solve Graphically

In Figure 2.8, we find a maximum of about 88,227 occurs when x is about 2.40.

Interpret

To maximize revenue, Twin Pixie should set the price for its store brand of dough-
nut-shaped oat breakfast cereal at $2.40 per box. Based on the model, this will yield
a weekly revenue of about $88,227. Now try Exercise 55.

Recall that the average rate of change of a linear function is constant. In Exercise 78
you will see that the average rate of change of a quadratic function is not constant.

In calculus you will study not only average rate of change but also instantaneous rate 
of change. Such instantaneous rates include velocity and acceleration, which we now
begin to investigate.

Since the time of Galileo Galilei (1564–1642) and Isaac Newton (1642–1727), the 
vertical motion of a body in free fall has been well understood. The vertical velocity
and vertical position (height) of a free-falling body (as functions of time) are classical
applications of linear and quadratic functions.

Table 2.3 Rubber Ball Data 
from CBR™

Time (sec) Height (m)

0.0000 1.03754
0.1080 1.40205
0.2150 1.63806
0.3225 1.77412
0.4300 1.80392
0.5375 1.71522
0.6450 1.50942
0.7525 1.21410
0.8600 0.83173

Vertical Free-Fall Motion

The height s and vertical velocity v of an object in free fall are given by

where t is time (in seconds), is the acceleration
due to gravity, is the initial vertical velocity of the object, and is its initial
height.

s0v0

g L 32 ft/sec2
L 9.8 m/sec2

s1t2 = -  

1

2
 gt 2

+ v0t + s0 and v1t2 = -gt + v0,

[0, 5] by [–10000, 100000]

X=2.3967298 Y=88226.727
Maximum

FIGURE 2.8 The revenue model for
Example 7.
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[0, 1.2] by [–0.5, 2.0]

(a)

[0, 1.2] by [–0.5, 2.0]

(b)

X=.40183958 Y=1.8000558
Maximum

[0, 1.2] by [–0.5, 2.0]

(c)

X=1.0222877   Y=0
Zero

FIGURE 2.9 Scatter plot and graph of height versus time for Example 8.

Reminder
Recall from Section 1.7 that is the coeffi-
cient of determination, which measures good-
ness of fit.

R2

Solve Graphically and Numerically

The maximum height is the maximum value of which occurs at the vertex 
of its graph. We can see from Figure 2.9b that the vertex has coordinates of about

.

In Figure 2.9c, to determine when the ball hits the face of the CBR™, we calculate
the positive-valued zero of the height function, which is We turn to our
linear model to compute the vertical velocity at impact:

Interpret

The maximum height the ball achieved was about 1.80 m above the face of the
CBR™. The ball’s downward rate is about 5.80 m/sec when it hits the CBR™.

The curve in Figure 2.9b appears to fit the data extremely well, and 
You may have noticed, however, that Table 2.3 contains the ordered pair 
0.4300, 1.80392 and that , which is the maximum shown in 

Figure 2.9b. So, even though our model is theoretically based and an excellent fit to
the data, it is not a perfect model. Despite its imperfections, the model provides accu-
rate and reliable predictions about the CBR™ experiment. Now try Exercise 63.

1.80392 7 1.80021
R2

L 0.999.

v11.0222 = -9.35211.0222 + 3.758 L -5.80 m/sec

t L 1.022.

1.800210.402,

s1t2,

QUICK REVIEW 2.1 (For help, go to Sections A.2. and P.4)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–2, write an equation in slope-intercept form for a line
with the given slope m and y-intercept b.

1. 2.

In Exercises 3–4, write an equation for the line containing the given
points. Graph the line and points.

3. and 4. and 1-2, -3211, 5213, 121-2, 42

m = -1.8, b = -2m = 8, b = 3.6

In Exercises 5–8, expand the expression.

5. 6.

7. 8.

In Exercises 9–10, factor the trinomial.

9. 10. 3x2
+ 12x + 122x2

- 4x + 2

-31x + 72231x - 622
1x - 4221x + 322
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SECTION 2.1 EXERCISES

In Exercises 1–6, determine which are polynomial functions. For those
that are, state the degree and leading coefficient. For those that are not,
explain why not.

1. 2.

3. 4.

5. 6.

In Exercises 7–12, write an equation for the linear function ƒ satisfying
the given conditions. Graph 

7.

8.

9.

10.

11.

12.

In Exercises 13–18, match a graph to the function. Explain your choice.

ƒ1-42 = 0 and ƒ102 = 2

ƒ102 = 3 and ƒ132 = 0

ƒ112 = 2 and ƒ152 = 7

ƒ1-42 = 6 and ƒ1-12 = 2

ƒ1-32 = 5 and ƒ162 = -2

ƒ1-52 = -1 and ƒ122 = 4

y = ƒ1x2.
k1x2 = 4x - 5x2h1x2 = 23 27x3

+ 8x6

ƒ1x2 = 13ƒ1x2 = 2x5
-

1

2
 x + 9

ƒ1x2 = -9 + 2xƒ1x2 = 3x -5
+ 17

In Exercises 23–26, find the vertex and axis of the graph of the
function.

23. 24.

25. 26.

In Exercises 27–32, find the vertex and axis of the graph of the func-
tion. Rewrite the equation for the function in vertex form.

27. 28.

29. 30.

31. 32.

In Exercises 33–38, use completing the square to describe the graph of
each function. Support your answers graphically.

33. 34.

35. 36.

37. 38.

In Exercises 39–42, write an equation for the parabola shown, using the
fact that one of the given points is the vertex.

39.

g1x2 = 5x2
- 25x + 12ƒ1x2 = 2x2

+ 6x + 7

h1x2 = 8 + 2x - x2ƒ1x2 = 10 - 16x - x2

g1x2 = x2
- 6x + 12ƒ1x2 = x2

- 4x + 6

h1x2 = -2x2
- 7x - 4g1x2 = 5x2

+ 4 - 6x

ƒ1x2 = 6 - 2x + 4x2ƒ1x2 = 8x - x2
+ 3

ƒ1x2 = -2x2
+ 7x - 3ƒ1x2 = 3x2

+ 5x - 4

g1x2 = 21x - 1322 + 4ƒ1x2 = 51x - 122 - 7

g1x2 = -31x + 222 - 1ƒ1x2 = 31x - 122 + 5

(e) (f)

(a) (b)

(c) (d)

13. 14.

15. 16.

17. 18.

In Exercises 19–22, describe how to transform the graph of 
into the graph of the given function. Sketch each graph by hand.

19. 20.

21. 22. h1x2 = -3x2
+ 2g1x2 =

1

2
 1x + 222 - 3

h1x2 =

1

4
 x2

- 1g1x2 = 1x - 322 - 2

ƒ1x2 = x2

ƒ1x2 = 12 - 21x + 122ƒ1x2 = 21x - 122 - 3

ƒ1x2 = 12 - 21x - 122ƒ1x2 = 4 - 31x - 122
ƒ1x2 = 31x + 222 - 7ƒ1x2 = 21x + 122 - 3

[–5, 5] by [–15, 15]

(–1, –3)

(1, 5)

40.

42.41.

[–5, 5] by [–15, 15]

(4, –7)

(1, 11)

[–5, 5] by [–15, 15]

(2, –13)

(–1, 5)

[–5, 5] by [–15, 15]

(2, –7)

(0, 5)

In Exercises 43 and 44, write an equation for the quadratic function
whose graph contains the given vertex and point.

43. Vertex , point 

44. Vertex , point 

In Exercises 45–48, describe the strength and direction of the linear
correlation.

45. 46.

1-4, -2721-2, -52
10, 5211, 32

y

x

50

40

30

20

10

10 20 30 40 50

y

x

50

40

30

20

10

10 20 30 40 50
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47. 48. 53. Table 2.6 shows the average hourly compensation of U.S. pro-
duction workers for several years. Let x be the number of years
since 1970, so that stands for 1975, and so forth.x = 5
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y

x

50

40

30

20

10

10 20 30 40 50

y

x

50

40

30

20

10

10 20 30 40 50

49. Comparing Age and Weight A group of male chil-
dren were weighed. Their ages and weights are recorded in
Table 2.4.

Table 2.4 Children’s Age and Weight

Age (months) Weight (pounds)

18 23
20 25
24 24
26 32
27 33
29 29
34 35
39 39
42 44

Table 2.5 U.S. Life Expectancy

(a) Draw a scatter plot of these data.

(b) Writing to Learn Describe the strength and direc-
tion of the correlation between age and weight.

50. Life Expectancy Table 2.5 shows the average number
of additional years a U.S. citizen is expected to live for various
ages.

Age Remaining Life
(years) Expectancy (years)

10 68.5
20 58.8
30 49.3
40 39.9
50 30.9
60 22.5
70 15.1

Source: United States Life Tables, 2004. National Vital
Statistics Reports, December, 2007.

Table 2.6 Production Worker Earnings
Year Hourly Compensation (dollars)

1975 4.73
1985 8.74
1995 11.65
2005 16.13

Source: U.S. Bureau of Labor Statistics as reported in The
World Almanac and Book of Facts 2009.

(a) Draw a scatter plot of these data.

(b) Writing to Learn Describe the strength and direc-
tion of the correlation between age and life expectancy.

51. Straight-Line Depreciation Mai Lee bought a com-
puter for her home office and depreciated it over 5 years using
the straight-line method. If its initial value was $2350, what is
its value 3 years later?

52. Costly Doll Making Patrick’s doll-making business has
weekly fixed costs of $350. If the cost for materials is $4.70 per
doll and his total weekly costs average $500, about how many
dolls does Patrick make each week?

(a) Writing to Learn Find the linear regression model
for the data. What does the slope in the regression model
represent?

(b) Use the linear regression model to predict the production
worker average hourly compensation in the year 2015.

54. Finding Maximum Area Among all the rectangles
whose perimeters are 100 ft, find the dimensions of the one
with maximum area.

55. Determining Revenue The per unit price p (in dol-
lars) of a popular toy when x units (in thousands) are produced
is modeled by the function

The revenue (in thousands of dollars) is the product of the price
per unit and the number of units (in thousands) produced. That is,

(a) State the dimensions of a viewing window that shows 
a graph of the revenue model for producing 0 to 100,000
units.

(b) How many units should be produced if the total revenue is
to be $1,000,000?

56. Finding the Dimensions of a Painting A large
painting in the style of Rubens is 3 ft longer than it is wide. If the
wooden frame is 12 in. wide, the area of the picture and frame
is 208 ft2, find the dimensions of the painting.

57. Using Algebra in Landscape Design Julie Stone
designed a rectangular patio that is 25 ft by 40 ft. This patio is
surrounded by a terraced strip of uniform width planted with
small trees and shrubs. If the area A of this terraced strip is

, find the width x of the strip.504 ft2

revenue = xp = x112 - 0.025x2.

price = p = 12 - 0.025x.
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58. Management Planning The Welcome Home apart-
ment rental company has 1600 units available, of which 800 are
currently rented at $300 per month. A market survey indicates
that each $5 decrease in monthly rent will result in 20 new leases.

(a) Determine a function that models the total rental in-
come realized by Welcome Home, where x is the number of
$5 decreases in monthly rent.

(b) Find a graph of for rent levels between $175 and
$300 (that is, that clearly shows a maximum
for .

(c) What rent will yield Welcome Home the maximum
monthly income?

59. Group Activity Beverage Business The Sweet
Drip Beverage Co. sells cans of soda pop in machines. It finds
that sales average 26,000 cans per month when the cans sell for
50¢ each. For each nickel increase in the price, the sales per
month drop by 1000 cans.

(a) Determine a function that models the total revenue
realized by Sweet Drip, where x is the number of $0.05
increases in the price of a can.

(b) Find a graph of that clearly shows a maximum for 

(c) How much should Sweet Drip charge per can to realize the
maximum revenue? What is the maximum revenue?

60. Group Activity Sales Manager Planning Jack
was named District Manager of the Month at the Athens Wire
Co. due to his hiring study. It shows that each of the 30 sales-
persons he supervises average $50,000 in sales each month,
and that for each additional salesperson he would hire, the av-
erage sales would decrease $1000 per month. Jack concluded
his study by suggesting a number of salespersons that he
should hire to maximize sales. What was that number?

61. Free-Fall Motion As a promotion for the Houston Astros
downtown ballpark, a competition is held to see who can throw a
baseball the highest from the front row of the upper deck of seats,
83 ft above field level. The winner throws the ball with an initial
vertical velocity of 92 ft/sec and it lands on the infield grass.

(a) Find the maximum height of the baseball.

(b) How much time is the ball in the air?

(c) Determine its vertical velocity when it hits the ground.

62. Baseball Throwing Machine The Sandusky Little
League uses a baseball throwing machine to help train 10-year-
old players to catch high pop-ups. It throws the baseball straight
up with an initial velocity of 48 ft/sec from a height of 3.5 ft.

(a) Find an equation that models the height of the ball t sec-
onds after it is thrown.

(b) What is the maximum height the baseball will reach? How
many seconds will it take to reach that height?

R1x2.R1x2

R1x2

R1x2
0 … x … 25)

R1x2

R1x2

(b) What is the maximum height above ground level that the
aerial bomb will reach? How many seconds will it take to
reach that height?

64. Landscape Engineering In
her first project after being employed
by Land Scapes International, Becky
designs a decorative water fountain that
will shoot water to a maximum height
of 48 ft. What should be the initial ve-
locity of each drop of water to achieve
this maximum height? (Hint: Use a
grapher and a guess-and-check strategy.)

65. Patent Applications Using quadratic regression on the
data in Table 2.7, predict the year when the number of patent
applications reached 450,000. Let stand for 1980, 
for 1990, and so forth.

x = 10x = 0

SECTION 2.1 Linear and Quadratic Functions and Modeling 171

Table 2.7 U.S. Patent Applications

Year Applications (thousands)

1980 113.0
1990 176.7
1995 228.8
1998 261.4
1999 289.5
2000 315.8
2001 346.6
2002 357.5
2003 367.0

Source: U.S. Census Bureau, Statistical Abstract of 
the United States, 2004–2005 (124th ed., 
Washington, D.C., 2004).

66. Highway Engineering Interstate 70 west of Denver,
Colorado, has a section posted as a 6% grade. This means that
for a horizontal change of 100 ft there is a 6-ft vertical change.

6%
GRADE

6% grade

63. Fireworks Planning At the Bakersville Fourth of July
celebration, fireworks are shot by remote control into the air
from a pit that is 10 ft below the earth’s surface.

(a) Find an equation that models the height of an aerial bomb
t seconds after it is shot upward with an initial velocity of
80 ft/sec. Graph the equation.

(a) Find the slope of this section of the highway.

(b) On a highway with a 6% grade what is the horizontal dis-
tance required to climb 250 ft?

(c) A sign along the highway says 6% grade for the next 7 mi.
Estimate how many feet of vertical change there are along
those 7 mi. (There are 5280 ft in 1 mile.)

6965_CH02_pp157-250.qxd  1/14/10  1:13 PM  Page 171



172 CHAPTER 2 Polynomial, Power, and Rational Functions

Table 2.8 Children’s Ages and Weights

Age (months) Weight (pounds)

19 22
21 23
24 25
27 28
29 31
31 28
34 32
38 34
43 39

(a) Draw a scatter plot of the data.

(b) Find the linear regression model.

(c) Interpret the slope of the linear regression equation.

(d) Superimpose the regression line on the scatter plot.

(e) Use the regression model to predict the weight of a 
30-month-old girl.

68. Table 2.9 shows the median U.S. income of women (in 2007
dollars) for selected years. Let x be the number of years since
1940.

Source: U.S. Census Bureau as reported in The World
Almanac and Book of Facts 2009.

Table 2.9 Median Income of Women
in the United States (in 2007 dollars)

Year Median Income ($)

1950 7,165
1960 7,726
1970 10,660
1980 11,787
1990 15,486
2000 19,340
2007 20,922

(a) Find the linear regression model for the data.

(b) Use it to predict the median U.S. female income in 2015.

BASIC FUNCTION
The Identity Function

Domain:
Range:
Continuity:
Increasing-decreasing behavior:
Symmetry:
Boundedness:
Local extrema:
Horizontal asymptotes:
Vertical asymptotes:
End behavior:

ƒ1x2 = x

BASIC FUNCTION
The Squaring Function

Domain:
Range:
Continuity:
Increasing-decreasing behavior:
Symmetry:
Boundedness:
Local extrema:
Horizontal asymptotes:
Vertical asymptotes:
End behavior:

ƒ1x2 = x2

70. Analyzing a Function

Standardized Test Questions
71. True or False The initial value of 

is 0. Justify your answer.

72. True or False The graph of the function 
has no x-intercepts. Justify your answer.

In Exercises 73–76, you may use a graphing calculator to solve the
problem.

In Exercises 73 and 74, , 

73. Multiple Choice What is the value of m?

(A) 3 (B) (C) (D) 1/3 (E)

74. Multiple Choice What is the value of b?

(A) 4 (B) 11/3 (C) 7/3 (D) 1 (E)

In Exercises 75 and 76, let 

75. Multiple Choice What is the axis of symmetry of the
graph of ƒ?

(A) (B) (C)

(D) (E)

76. Multiple Choice What is the vertex of ƒ?

(A) (B) (C)

(D) (E)

Explorations
77. Writing to Learn Identifying Graphs of 

Linear Functions

(a) Which of the lines graphed on the next page are graphs of
linear functions? Explain.

(b) Which of the lines graphed on the next page are graphs of
functions? Explain.

(c) Which of the lines graphed on the next page are not graphs
of functions? Explain.

1-3, -521-3, 52
13, -5213, 5210, 02

y = 0y = -5

y = 5x = -3x = 3

ƒ1x2 = 21x + 322 - 5.

-1/3

-1/3-1-3

ƒ1-22 = 3, and ƒ142 = 1.ƒ1x2 = mx + b

x + 1
ƒ1x2 = x2

-

ƒ1x2 = 3x2
+ 2x - 3

67. A group of female children were weighed. Their ages and
weights are recorded in Table 2.8.

In Exercises 69–70, complete the analysis for the given Basic Function.

69. Analyzing a Function
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Extending the Ideas
79. Minimizing Sums of Squares The linear regression

line is often called the least-square lines because it minimizes
the sum of the squares of the residuals, the differences be-
tween actual y values and predicted y values:

where are the given data
pairs and is the re-
gression equation, as shown in
the figure.

Use these definitions to explain
why the regression line obtained
from reversing the ordered pairs in
Table 2.2 is not the inverse of the
function obtained in Example 3.

80. Median-Median Line Read about the median-median
line by going to the Internet, your grapher owner’s manual, or a
library. Then use the following data set to complete this problem.

(a) Draw a scatter plot of the data.

(b) Find the linear regression equation and graph it.

(c) Find the median-median line equation and graph it.

(d) Writing to Learn For these data, which of the two
lines appears to be the line of better fit? Why?

81. Suppose for the equation 

(a) Prove that the sum of the two solutions of this equation is

(b) Prove that the product of the two solutions of this equation
is 

82. Connecting Algebra and Geometry Prove that
the axis of the graph of is

, where a and b are real numbers.

83. Connecting Algebra and Geometry Identify the
vertex of the graph of , where a and b
are any real numbers.

84. Connecting Algebra and Geometry Prove that if
and are real numbers and are zeros of the quadratic func-

tion , then the axis of the graph of

85. Prove the Constant Rate of Change Theorem, which is stated
on page 160.

ƒ is x = 1x1 + x22/2.
ƒ1x2 = ax2

+ bx + c
x2x1

ƒ1x2 = 1x - a21x - b2
x = 1a + b2/2

ƒ1x2 = 1x - a21x - b2
c/a.

-b/a.

ax2
+ bx + c = 0.b2

- 4ac 7 0

512, 82, 13, 62, 15, 92, 16, 82, 18, 112, 110, 132, 112, 142, 115, 426

y = ax + b
1x i, yi2

residual = yi - 1axi + b2,

3
2

–1
–2
–3

y

x
–5 –4 –3 –2 –1 21 4 5

(i)

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –1 321 4 5

(ii)

3
2
1

–3

y

x
–5 –4 –3 –2 –1 321 4 5

(iii)

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

(iv)

3
2
1

–1

–3

y

x
–5 –4 –3 –2 –1 321 5

(v)

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

(vi)

78. Average Rate of Change Let 
and 

(a) Compute the average rate of change of ƒ from to

(b) Compute the average rate of change of ƒ from to

(c) Compute the average rate of change of ƒ from to

(d) Compute the average rate of change of g from to

(e) Compute the average rate of change of g from to

(f) Compute the average rate of change of g from to

(g) Compute the average rate of change of h from to

(h) Compute the average rate of change of k from to

(i) Compute the average rate of change of l from to
x = c.

x = a

x = c.
x = a

x = c.
x = a

x = c.
x = a

x = 4.
x = 1

x = 3.
x = 1

x = c.
x = a

x = 5.
x = 2

x = 3.
x = 1

l1x2 = x3.k1x2 = mx + b,h1x2 = 7x - 3,3x + 2,
g1x2 =ƒ1x2 = x2,

y

x
10 20 30 40 50

50

40

30

20

10

(xi, yi)

yi � (axi � b)

y � ax � b

6965_CH02_pp157-250.qxd  1/14/10  1:13 PM  Page 173




