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1.2 Functions and Their 
Properties

In this section we will introduce the terminology that is used to describe functions
throughout this book. Feel free to skim over parts with which you are already famil-
iar, but take the time to become comfortable with concepts that might be new to you
(like continuity and symmetry). Even if it takes several days to cover this section, it
will be precalculus time well spent.

Function Definition and Notation
Mathematics and its applications abound with examples of formulas by which quantita-
tive variables are related to each other. The language and notation of functions is ideal
for that purpose. A function is actually a simple concept; if it were not, history would
have replaced it with a simpler one by now. Here is the definition.

What you’ll learn about
• Function Definition and Notation
• Domain and Range
• Continuity
• Increasing and Decreasing Func-

tions
• Boundedness
• Local and Absolute Extrema
• Symmetry
• Asymptotes
• End Behavior

... and why
Functions and graphs form the
basis for understanding the math-
ematics and applications you will
see both in your workplace and
in coursework in college.

There are many ways to look at functions. One of the most intuitively helpful is the
“machine” concept (Figure 1.9), in which values of the domain 1x2 are fed into the ma-
chine 1the function ƒ2 to produce range values 1y2. To indicate that y comes from the
function acting on x, we use Euler’s elegant function notation 1which we
read as “y equals ƒ of x” or “ the value of ƒ at x”2. Here x is the independent variable
and y is the dependent variable.

A function can also be viewed as a mapping of the elements of the domain onto the el-
ements of the range. Figure 1.10a shows a function that maps elements from the do-
main X onto elements of the range Y. Figure 1.10b shows another such mapping, but
this one is not a function, since the rule does not assign the element to a unique
element of Y.

x1

y = ƒ1x2

(a) (b)

A function

Domain

X XY Y

Range

Not a function

y2 y2

y4
y1 y1

y3 y3

x2 x2

x1 x1

x3 x3
x4

x4

FIGURE 1.10 The diagram in (a) depicts a mapping from X to Y that is a function. The dia-
gram in (b) depicts a mapping from X to Y that is not a function.

x

f

f (x)

FIGURE 1.9 A “machine” diagram for a
function.

A Bit of History
The word function in its mathematical sense is
generally attributed to Gottfried Leibniz
(1646–1716), one of the pioneers in the methods
of calculus. His attention to clarity of notation is
one of his greatest contributions to scientific
progress, which is why we still use his notation
in calculus courses today. Ironically, it was not
Leibniz but Leonhard Euler (1707–1783) who
introduced the familiar notation ƒ1x2 .

DEFINITION Function, Domain, and Range

A function from a set D to a set R is a rule that assigns to every element in D a
unique element in R. The set D of all input values is the domain of the func-
tion, and the set R of all output values is the range of the function.
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This uniqueness of the range value is very important to us as we study function behav-
ior. Knowing that tells us something about ƒ, and that understanding would
be contradicted if we were to discover later that . That is why you will never
see a function defined by an ambiguous formula like .ƒ1x2 = 3x � 2

ƒ122 = 4
ƒ122 = 8
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EXAMPLE 1  Defining a Function
Does the formula define y as a function of x?

SOLUTION Yes, y is a function of x. In fact, we can write the formula in function
notation: When a number x is substituted into the function, the square of
x will be the output, and there is no ambiguity about what the square of x is.

Now try Exercise 3.

ƒ1x2 = x2.

y = x2

Another useful way to look at functions is graphically. The graph of the function
is the set of all points in the domain of ƒ. We match domain val-

ues along the x-axis with their range values along the y-axis to get the ordered pairs that
yield the graph of .y = ƒ1x2

1x, ƒ1x22, xy = ƒ1x2

Vertical Line Test

A graph 1set of points 1x, y22 in the xy-plane defines y as a function of x if and
only if no vertical line intersects the graph in more than one point.

EXAMPLE 2  Seeing a Function Graphically
Of the three graphs shown in Figure 1.11, which is not the graph of a function? How
can you tell?

SOLUTION The graph in (c) is not the graph of a function. There are three points
on the graph with x-coordinate 0, so the graph does not assign a unique value to 0.
(Indeed, we can see that there are plenty of numbers between and 2 to which the
graph assigns multiple values.) The other two graphs do not have a comparable prob-
lem because no vertical line intersects either of the other graphs in more than one
point. Graphs that pass this vertical line test are the graphs of functions.

Now try Exercise 5.

-2

[–4.7, 4.7] by [–3.3, 3.3]

(a)

[–4.7, 4.7] by [–3.3, 3.3]

(b)
[–4.7, 4.7] by [–3.3, 3.3]

(c)

FIGURE 1.11 One of these is not the graph of a function. (Example 2)

Domain and Range
We will usually define functions algebraically, giving the rule explicitly in terms of the
domain variable. The rule, however, does not tell the complete story without some con-
sideration of what the domain actually is.
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For example, we can define the volume of a sphere as a function of its radius by the for-
mula

1Note that this is “V of r”—not “ ”2.
This formula is defined for all real numbers, but the volume function is not defined for
negative r-values. So, if our intention were to study the volume function, we would re-
strict the domain to be all .r Ú 0

V # rV1r2 =

4

3
 pr 3
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What About Data?
When moving from a numerical model to an al-
gebraic model we will often use a function to ap-
proximate data pairs that by themselves violate
our definition. In Figure 1.12 we can see that
several pairs of data points fail the vertical line
test, and yet the linear function approximates the
data quite well.

[–1, 10] by [–1, 11]

FIGURE 1.12 The data points fail the ver-
tical line test but are nicely approximated by a
linear function. EXAMPLE 3  Finding the Domain of a Function

Find the domain of each of these functions:

(a)

(b)

(c) , where A1s2 is the area of an equilateral triangle with sides of
length s.

SOLUTION

Solve Algebraically

(a) The expression under a radical may not be negative. We set and
solve to find . The domain of ƒ is the interval 2.

(b) The expression under a radical may not be negative; therefore . Also, the
denominator of a fraction may not be zero; therefore . The domain of g is
the interval 2 with the number 5 removed, which we can write as the union
of two intervals: 2.

(c) The algebraic expression has domain all real numbers, but the behavior being
modeled restricts s from being negative. The domain of A is the interval 2.

Support Graphically

We can support our answers in (a) and (b) graphically, as the calculator should not
plot points where the function is undefined.

(a) Notice that the graph of (Figure 1.13a) shows points only for
, as expected.

(b) The graph of (Figure 1.13b) shows points only for , as
expected. Some calculators might show an unexpected line through the x-axis at

. This line, another form of grapher failure, should not be there. Ignoring
it, we see that 5, as expected, is not in the domain.

(c) The graph of (Figure 1.13c) shows the unrestricted domain of
the algebraic expression: all real numbers. The calculator has no way of know-
ing that s is the length of a side of a triangle. Now try Exercise 11.

y = 123/42s2

x = 5

x Ú 0y = 2x/1x - 52
x Ú -3

y = 2x + 3

30, q

30, 52 ´ 15, q
30, q

x Z 5
x Ú 0

3-3, qx Ú -3
x + 3 Ú 0

A1s2 = 123/42s2

g1x2 =

2x

x - 5

ƒ1x2 = 2x + 3

Note
The symbol “´” is read “union.” It means that
the elements of the two sets are combined to
form one set.

Agreement

Unless we are dealing with a model (like volume) that necessitates a restricted
domain, we will assume that the domain of a function defined by an algebraic
expression is the same as the domain of the algebraic expression, the implied
domain. For models, we will use a domain that fits the situation, the relevant
domain.
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Finding the range of a function algebraically is often much harder than finding the do-
main, although graphically the things we look for are similar: To find the domain we
look for all x-coordinates that correspond to points on the graph, and to find the range
we look for all y-coordinates that correspond to points on the graph. A good approach is
to use graphical and algebraic approaches simultaneously, as we show in Example 4.

SECTION 1.2 Functions and Their Properties 83

[–10, 10] by [–4, 4]

(a)
[–10, 10] by [–4, 4]

(b)

[–10, 10] by [–4, 4]

(c)

FIGURE 1.13 Graphical support of the algebraic solutions in Example 3. The vertical line in (b)
should be ignored because it results from grapher failure. The points in (c) with negative x-coordinates
should be ignored because the calculator does not know that x is a length (but we do).

Function Notation
A grapher typically does not use function nota-
tion. So the function is entered 
as . On some graphers you can eval-
uate ƒ at by entering on the home
screen. On the other hand, on other graphers

means .y1 * 3y1132
y1132x = 3

y1 = x2
+ 1

ƒ1x2 = x2
+ 1

EXAMPLE 4  Finding the Range of a Function

Find the range of the function 

SOLUTION

Solve Graphically

The graph of is shown in Figure 1.14.y =

2
x

ƒ1x2 =

2
x

 .

[–5, 5] by [–3, 3]

FIGURE 1.14 The graph of . Is in the range?y = 0y = 2/x

It appears that is not in the domain (as expected, because a denominator can-
not be zero). It also appears that the range consists of all real numbers except 0.

Confirm Algebraically

We confirm that 0 is not in the range by trying to solve :

(continued)

 2 = 0

 2 = 0 # x

 
2
x

= 0

2/x = 0

x = 0
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Let’s look at these cases individually.

This graph is continuous everywhere. Notice that the graph
has no breaks. This means that if we are studying the be-
havior of the function ƒ for x-values close to any particular
real number a, we can be assured that the ƒ1x2-values will
be close to ƒ1a2.

This graph is continuous everywhere except for the “hole”
at . If we are studying the behavior of this function ƒ
for x-values close to a, we cannot be assured that the ƒ1x2-
values will be close to ƒ1a2. In this case, ƒ1x2 is smaller than
ƒ1a2 for x near a. This is called a removable discontinuity
because it can be patched by redefining ƒ1a2 so as to plug
the hole.

x = a

84 CHAPTER 1 Functions and Graphs

Since the equation is never true, has no solutions, and so is not
in the range. But how do we know that all other real numbers are in the range? We let
k be any other real number and try to solve :

As you can see, there was no problem finding an x this time, so 0 is the only number
not in the range of ƒ. We write the range .

Now try Exercise 17.
1- q , 02 ´ 10, q2

 x =

2

k

 2 = k # x

 
2
x

= k

2/x = k

y = 02/x = 02 = 0

You can see that this is considerably more involved than finding a domain, but we are
hampered at this point by not having many tools with which to analyze function behav-
ior. We will revisit the problem of finding ranges in Exercise 86, after having developed
the tools that will simplify the analysis.

Continuity
One of the most important properties of the majority of functions that model real-world
behavior is that they are continuous. Graphically speaking, a function is continuous at a
point if the graph does not come apart at that point. We can illustrate the concept with a
few graphs (Figure 1.15):

y

x

Continuous at all x

y

x

Continuous at all x

y

x

Removable discontinuity

f (a)

a

y

x

Removable discontinuity

f (a)

a

y

x

Removable discontinuity

a

y

x

Jump discontinuity

a

y

x

Infinite discontinuity

a

FIGURE 1.15 Some points of discontinuity.
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This graph also has a removable discontinuity at . If
we are studying the behavior of this function ƒ for x-values
close to a, we are still not assured that the ƒ1x2-values will
be close to ƒ1a2, because in this case ƒ1a2 doesn’t even ex-
ist. It is removable because we could define ƒ1a2 in such a
way as to plug the hole and make ƒ continuous at a.

Here is a discontinuity that is not removable. It is a jump
discontinuity because there is more than just a hole at

; there is a jump in function values that makes the gap
impossible to plug with a single point 1a, ƒ1a22, no matter
how we try to redefine ƒ1a2.

This is a function with an infinite discontinuity at . It
is definitely not removable.

x = a

x = a

x = a

SECTION 1.2 Functions and Their Properties 85

y

x

Removable discontinuity

a

y

x

Jump discontinuity

a

y

x

Infinite discontinuity

a

The simple geometric concept of an unbroken graph at a point is a visual notion that is
extremely difficult to communicate accurately in the language of algebra. The key con-
cept from the pictures seems to be that we want the point 1x, ƒ1x22 to slide smoothly
onto the point 1a, ƒ1a22 without missing it from either direction. We say that ƒ1x2 ap-
proaches ƒ1a2 as a limit as x approaches a, and we write This “limit 

notation” reflects graphical behavior so naturally that we will use it throughout this
book as an efficient way to describe function behavior, beginning with this definition of
continuity. A function ƒ is continuous at if A function is 

discontinuous at if it is not continuous at x = a.x � a

 lim
x:a

ƒ1x2 = ƒ1a2.x � a

 lim
x:a

ƒ1x2 = ƒ1a2.

A Limited Use of Limits
While the notation of limits is easy to under-
stand, the algebraic definition of a limit can be 
a little intimidating and is best left to future
courses. We will have more to say about limits in
Chapter 10. For now, if you understand the state-
ment you are where you 

need to be.

lim
x:5
1x2

- 12 = 24,

EXAMPLE 5  Identifying Points of Discontinuity
Judging from the graphs, which of the following figures shows functions that are dis-
continuous at ? Are any of the discontinuities removable?

SOLUTION Figure 1.16 shows a function that is undefined at and hence not
continuous there. The discontinuity at is not removable.

The function graphed in Figure 1.17 is a quadratic polynomial whose graph is a
parabola, a graph that has no breaks because its domain includes all real numbers. It
is continuous for all x.

The function graphed in Figure 1.18 is not defined at and so cannot be contin-
uous there. The graph looks like the graph of the line , except that there is
a hole where the point 12, 42 should be. This is a removable discontinuity.

Now try Exercise 21.

y = x + 2
x = 2

x = 2
x = 2

x = 2
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Increasing and Decreasing Functions
Another function concept that is easy to understand graphically is the property of being
increasing, decreasing, or constant on an interval. We illustrate the concept with a few
graphs (Figure 1.19):

86 CHAPTER 1 Functions and Graphs

[–9.4, 9.4] by [–6, 6]

FIGURE 1.16 ƒ1x2 =

x + 3

x - 2

[–5, 5] by [–10, 10]

FIGURE 1.17 g1x2 = 1x + 321x - 22
[–9.4, 9.4] by [–6.2, 6.2]

FIGURE 1.18 h1x2 =

x2
- 4

x - 2

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –1 321 4 5

Increasing

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

Decreasing

3

1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

Constant

3
2

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

Decreasing on (–�, –2]
Constant on [–2, 2]
Increasing on [2, �)

FIGURE 1.19 Examples of increasing, decreasing, or constant on an interval.

Once again the idea is easy to communicate graphically, but how can we identify these
properties of functions algebraically? Exploration 1 will help to set the stage for the al-
gebraic definition.

EXPLORATION 1 Increasing, Decreasing, and Constant Data

1. Of the three tables of numerical data below, which would be modeled by a
function that is (a) increasing, (b) decreasing, (c) constant?

X Y1

12

12

0 12

1 12

3 12

7 12

-1

-2

X Y2

3

1

0 0

1

3

7 -12

-6

-2

-1

-2

X Y3

0

1 1

3 4

7 10

-1

-3-1

-5-2
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DEFINITION Increasing, Decreasing, and Constant Function 
on an Interval

A function ƒ is increasing on an interval if, for any two points in the interval, a
positive change in x results in a positive change in ƒ1x2.
A function ƒ is decreasing on an interval if, for any two points in the interval, a
positive change in x results in a negative change in ƒ1x2.
A function ƒ is constant on an interval if, for any two points in the interval, a
positive change in x results in a zero change in ƒ1x2.

Your analysis of the quotients in the exploration should help you to understand
the following definition.

¢Y/¢X

SECTION 1.2 Functions and Their Properties 87

2. Make a list of Y1, the change in Y1 values as you move down the list. As
you move from to , the change is . Do the
same for the values of Y2 and Y3.

3. What is true about the quotients for an increasing function? For a
decreasing function? For a constant function?

4. Where else have you seen the quotient ? Does this reinforce your an-
swers in part 3?

¢Y/¢X

¢Y/¢X

¢Y1 = b - aY1 = bY1 = a
¢

X moves X Y1
from

to 1

to 0 1

0 to 1 1

1 to 3 2

3 to 7 4

-1

-1-2

¢¢ X moves X Y2
from

to 1

to 0 1

0 to 1 1

1 to 3 2

3 to 7 4

-1

-1-2

¢¢ X moves X Y3
from

to 1

to 0 1

0 to 1 1

1 to 3 2

3 to 7 4

-1

-1-2

¢¢

List on a Calculator
Your calculator might be able to help you with
the numbers in Exploration 1. Some calculators
have a “ ” operation that will calculate the
changes as you move down a list. For example,
the command “ ” will store the
differences from L1 into L3. Note that 
(L1) is always one entry shorter than L1 itself.

¢List
¢List (L1) : L3

¢List

≤

EXAMPLE 6  Analyzing a Function for Increasing-
Decreasing Behavior

For each function, tell the intervals on which it is increasing and the intervals on
which it is decreasing.

(a) (b)

SOLUTION

Solve Graphically

(a) We see from the graph in Figure 1.20 that ƒ is decreasing on and
increasing on . (Notice that we include in both intervals. Don’t
worry that this sets up some contradiction about what happens at , because
we only talk about functions increasing or decreasing on intervals, and is not
an interval.)

(continued)

-2
-2

-23-2, q2 1- q , -24

g1x2 =

x2

x2
- 1

ƒ1x2 = 1x + 222
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Now try Exercise 33.

88 CHAPTER 1 Functions and Graphs

(b) We see from the graph in Figure 1.21 that g is increasing on , increasing
again on , decreasing on and decreasing again on .11, q230, 12,1-1, 04 1- q , -12

[–5, 5] by [–3, 5]

FIGURE 1.20 The function decreases on and increases on
. (Example 6)3-2, q2

1- q , -24ƒ1x2 = 1x + 222

[–4.7, 4.7] by [–3.1, 3.1]

FIGURE 1.21 The function increases on and ; the
function decreases on and . (Example 6)11, q230, 12

1-1, 041- q , -12g1x2 = x2/1x2
- 12

You may have noticed that we are making some assumptions about the graphs. How do
we know that they don’t turn around somewhere off the screen? We will develop some
ways to answer that question later in the book, but the most powerful methods will
await you when you study calculus.

Boundedness
The concept of boundedness is fairly simple to understand both graphically and alge-
braically. We will move directly to the algebraic definition after motivating the concept
with some typical graphs (Figure 1.22).

y

x

Not bounded above
Not bounded below

y

x

Not bounded above
Bounded below

y

x

Bounded above
Not bounded below

y

x

Bounded

FIGURE 1.22 Some examples of graphs bounded and not bounded above and below.
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We can extend the above definition to the idea of bounded on an interval by restrict-
ing the domain of consideration in each part of the definition to the interval we wish to
consider. For example, the function is bounded above on the interval

and bounded below on the interval .10, q21- q , 02 ƒ1x2 = 1/x

SECTION 1.2 Functions and Their Properties 89

EXAMPLE 7  Checking Boundedness
Identify each of these functions as bounded below, bounded above, or bounded.

(a) (b)

SOLUTION

Solve Graphically

The two graphs are shown in Figure 1.23. It appears that w is bounded below, and p
is bounded.

Confirm Graphically

We can confirm that w is bounded below by finding a lower bound, as follows:

is nonnegative.

Multiply by 3.

Subtract 4.

Thus, is a lower bound for .

We leave the verification that p is bounded as an exercise (Exercise 77).
Now try Exercise 37.

w1x2 = 3x2
- 4-4

 3x2
- 4 Ú -4

 3x2
- 4 Ú 0 - 4

 3x2
Ú 0

x2 x2
Ú 0

p1x2 =

x

1 + x2w1x2 = 3x2
- 4

[–4, 4] by [–5, 5]

(a)

[–8, 8] by [–1, 1]

(b)

FIGURE 1.23 The graphs for Example 7.
Which are bounded where?

Local and Absolute Extrema
Many graphs are characterized by peaks and valleys where they change from increasing
to decreasing and vice versa. The extreme values of the function (or local extrema) can
be characterized as either local maxima or local minima. The distinction can be easily
seen graphically. Figure 1.24 shows a graph with three local extrema: local maxima at
points P and R and a local minimum at Q.

This is another function concept that is easier to see graphically than to describe alge-
braically. Notice that a local maximum does not have to be the maximum value of a
function; it only needs to be the maximum value of the function on some tiny interval.

We have already mentioned that the best method for analyzing increasing and decreas-
ing behavior involves calculus. Not surprisingly, the same is true for local extrema. We
will generally be satisfied in this course with approximating local extrema using a
graphing calculator, although sometimes an algebraic confirmation will be possible
when we learn more about specific functions.

y

x

P

Q

R

FIGURE 1.24 The graph suggests that ƒ
has a local maximum at P, a local minimum at
Q, and a local maximum at R.

DEFINITION Lower Bound, Upper Bound, and Bounded

A function ƒ is bounded below if there is some number b that is less than or
equal to every number in the range of ƒ. Any such number b is called a lower
bound of ƒ.

A function ƒ is bounded above if there is some number B that is greater than 
or equal to every number in the range of ƒ. Any such number B is called an
upper bound of ƒ.

A function ƒ is bounded if it is bounded both above and below.
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EXAMPLE 8  Identifying Local Extrema
Decide whether has any local maxima or local minima. If
so, find each local maximum value or minimum value and the value of x at which
each occurs.

SOLUTION The graph of (Figure 1.25) suggests that there
are two local minimum values and one local maximum value. We use the graphing
calculator to approximate local minima as (which occurs at and

(which occurs at . Similarly, we identify the (approximate) local
maximum as 1.32 (which occurs at ).

Now try Exercise 41.
x L 0.46

x L 1.60)-1.77
x L -2.06)-24.06

y = x4
- 7x2

+ 6x

ƒ1x2 = x4
- 7x2

+ 6x
[–5, 5] by [–35, 15]

X=–2.056546    Y=–24.05728
Minimum

FIGURE 1.25 A graph of 
. (Example 8)7x2

+ 6x
y = x4

-

Symmetry
In the graphical sense, the word “symmetry” in mathematics carries essentially the
same meaning as it does in art: The picture (in this case, the graph) “looks the same”
when viewed in more than one way. The interesting thing about mathematical symme-
try is that it can be characterized numerically and algebraically as well. We will be
looking at three particular types of symmetry, each of which can be spotted easily from
a graph, a table of values, or an algebraic formula, once you know what to look for.
Since it is the connections among the three models (graphical, numerical, and alge-
braic) that we need to emphasize in this section, we will illustrate the various symme-
tries in all three ways, side-by-side.

Using a Grapher to Find Local
Extrema
Most modern graphers have built-in “maximum”
and “minimum” finders that identify local ex-
trema by looking for sign changes in . It is not
easy to find local extrema by zooming in on
them, as the graphs tend to flatten out and hide the
very behavior you are looking at. If you use this
method, keep narrowing the vertical window to
maintain some curve in the graph.

¢y

y

y

x
–x x

(x, y)(–x, y)

FIGURE 1.26 The graph looks the same to
the left of the y-axis as it does to the right of it.

Symmetry with respect to the y-axis
Example: 

Graphically Numerically Algebraically

For all x in the domain of ƒ,

Functions with this property (for example, 
n even) are even functions. xn,

ƒ1-x2 = ƒ1x2.

f (x) = x2

x ƒ1x2
9

4

1

1 1

2 4

3 9

-1

-2

-3

DEFINITION Local and Absolute Extrema

A local maximum of a function ƒ is a value ƒ1c2 that is greater than or equal 
to all range values of ƒ on some open interval containing c. If ƒ1c2 is greater
than or equal to all range values of ƒ, then ƒ1c2 is the maximum 1or absolute
maximum2 value of ƒ.

A local minimum of a function ƒ is a value ƒ1c2 that is less than or equal to all
range values of ƒ on some open interval containing c. If ƒ1c2 is less than or
equal to all range values of ƒ, then ƒ1c2 is the minimum (or absolute mini-
mum) value of ƒ.

Local extrema are also called relative extrema.
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Symmetry with respect to the x-axis 
Example: 

Graphically Numerically Algebraically

Graphs with this kind of symmetry are not 
functions (except the zero function), but we 
can say that is on the graph whenever 

is on the graph.1x, y2
1x, -y2

x = y2

SECTION 1.2 Functions and Their Properties 91

x y

9

4

1

1 1

4 2

9 3

-1

-2

-3

x y

1 1

2 8

3 27

-1-1

-8-2

-27-3

y

–y

y

xx

(x, y)

(x, –y)

FIGURE 1.27 The graph looks the
same above the x-axis as it does below it.

Symmetry with respect to the origin
Example: 

Graphically Numerically Algebraically

For all x in the domain of ƒ,

Functions with this property (for example, 
n odd) are odd functions.

xn,

ƒ1-x2 = -ƒ1x2.

f (x) = x3

y

–y

y

x
–x x

(x, y)

(–x, –y)

FIGURE 1.28 The graph looks the
same upside-down as it does rightside-up.

EXAMPLE 9  Checking Functions for Symmetry
Tell whether each of the following functions is odd, even, or neither.

(a) (b) (c)

SOLUTION

(a) Solve Graphically
The graphical solution is shown in Figure 1.29.

h1x2 =

x3

4 - x2g1x2 = x2
- 2x - 2ƒ1x2 = x2

- 3

[–5, 5] by [–4, 4]

FIGURE 1.29 This graph appears to be symmetric with respect to the y-axis, so we
conjecture that ƒ is an even function.

(continued)
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Asymptotes

Consider the graph of the function in Figure 1.32.

The graph appears to flatten out to the right and to the left, getting closer and closer to
the horizontal line We call this line a horizontal asymptote. Similarly, the
graph appears to flatten out as it goes off the top and bottom of the screen, getting
closer and closer to the vertical lines and We call these lines vertical
asymptotes. If we superimpose the asymptotes onto Figure 1.32 as dashed lines, you
can see that they form a kind of template that describes the limiting behavior of the
graph (Figure 1.33 on the next page).

Since asymptotes describe the behavior of the graph at its horizontal or vertical extrem-
ities, the definition of an asymptote can best be stated with limit notation. In this defin-
ition, note that means “x approaches a from the left,” while means “x
approaches a from the right.”

x : a+x : a-

x = 2.x = -2

y = -2.

ƒ1x2 =

2x2

4 - x2

92 CHAPTER 1 Functions and Graphs

Confirm Algebraically

We need to verify that

for all x in the domain of ƒ.

Since this identity is true for all x, the function ƒ is indeed even.

(b) Solve Graphically
The graphical solution is shown in Figure 1.30.

Confirm Algebraically

We need to verify that

So and .

We conclude that g is neither odd nor even.

(c) Solve Graphically
The graphical solution is shown in Figure 1.31.

Confirm Algebraically

We need to verify that

for all x in the domain of h.

Since this identity is true for all x except (which are not in the domain of h),
the function h is odd. Now try Exercise 49.

�2

 = -h1x2
 h1-x2 =

1-x23
4 - 1-x22 =

-x3

4 - x2

h1-x2 = -h1x2

g1-x2 Z -g1x2g1-x2 Z g1x2
 -g1x2 = -x2

+ 2x + 2

 g1x2 = x2
- 2x - 2

 = x2
+ 2x - 2

 g1-x2 = 1-x22 - 21-x2 - 2

g1-x2 Z g1x2 and g1-x2 Z -g1x2.

 = ƒ1x2
 ƒ1-x2 = 1-x22 - 3 = x2

- 3

ƒ1-x2 = ƒ1x2

[–5, 5] by [–4, 4]

FIGURE 1.30 This graph does not appear
to be symmetric with respect to either the y-
axis or the origin, so we conjecture that g is
neither even nor odd.

[–4.7, 4.7] by [–10, 10]

FIGURE 1.31 This graph appears to be
symmetric with respect to the origin, so we
conjecture that h is an odd function.

6

2
1

–1
–2

–6

y

3
4
5

–3
–4
–5

x
–5 –4 –3 –2 –1 321 4 5

FIGURE 1.32 The graph of
has two vertical asymp-

totes and one horizontal asymptote.
ƒ1x2 = 2x2/14 - x22
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End Behavior
A horizontal asymptote gives one kind of end behavior for a function because it shows
how the function behaves as it goes off toward either “end” of the x-axis. Not all graphs
approach lines, but it is helpful to consider what does happen “out there.” We illustrate
with a few examples.

SECTION 1.2 Functions and Their Properties 93

6

2
1

–1

–6

y

3
4
5

–3
–4
–5

x
–5 –4 –3 –1 31 4 5

FIGURE 1.33 The graph of
with the asymptotes

shown as dashed lines.
ƒ1x2 = 2x2/14 - x22

[–4.7, 4.7] by [–3, 3]

FIGURE 1.34 The graph of
has vertical asymptotes

of and and a horizontal asymp-
tote of . (Example 10)y = 0

x = 2x = -1
y = x/1x2

- x - 22

EXAMPLE 10  Identifying the Asymptotes of a Graph
Identify any horizontal or vertical asymptotes of the graph of

SOLUTION The quotient is undefined at
and , which makes them likely sites for vertical asymptotes. The graph

(Figure 1.34) provides support, showing vertical asymptotes of and .

For large values of x, the numerator (a large number) is dwarfed by the denominator
(a product of two large numbers), suggesting that . This

would indicate a horizontal asymptote of The graph (Figure 1.34) provides
support, showing a horizontal asymptote of as . Similar logic suggests 

that , indicating the same horizontal asymptote 

as . Again, the graph provides support for this.
Now try Exercise 57.

x : - q

 lim
x: -q

 x/11x + 121x - 222 = -0 = 0

x : qy = 0
y = 0.

 lim
x: q

 x/11x + 121x - 222 = 0

x = 2x = -1
x = 2x = -1

x/1x2
- x - 22 = x/11x + 121x - 222

y =

x

x2
- x - 2

 .

EXAMPLE 11  Matching Functions Using End Behavior
Match the functions with the graphs in Figure 1.35 by considering end behavior. All
graphs are shown in the same viewing window.

(a) (b)

(c) (d)

(continued)

y =

3x4

x2
+ 1

y =

3x3

x2
+ 1

y =

3x2

x2
+ 1

y =

3x

x2
+ 1

DEFINITION Horizontal and Vertical Asymptotes

The line is a horizontal asymptote of the graph of a function 
if approaches a limit of b as x approaches or .

In limit notation:

or

The line is a vertical asymptote of the graph of a function if
ƒ1x2 approaches a limit of or as x approaches a from either direction.

In limit notation:

or  lim
x:a+

 ƒ1x2 = � q lim
x:a-

 ƒ1x2 = � q

- q+ q

y = ƒ1x2x = a

 lim
x: +q

 ƒ1x2 = b lim
x: -q

 ƒ1x2 = b

- q+ qƒ1x2 y = ƒ1x2y = b
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SECTION 1.2 EXERCISES

In Exercises 1–4, determine whether the formula determines y as a
function of x. If not, explain why not.

1. 2.

3. 4.

In Exercises 5–8, use the vertical line test to determine whether the
curve is the graph of a function.

x = 12 - yx = 2y2

y = x2
; 3y = 2x - 4

y

x

y

x

QUICK REVIEW 1.2 (For help, go to Sections A.3, P.3, and P.5.)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, solve the equation or inequality.

1. 2.

3. 4.

In Exercises 5–10, find all values of x algebraically for which the
algebraic expression is not defined. Support your answer 
graphically.

5 - x … 0x - 10 6 0

9 - x2
= 0x2

- 16 = 0

5. 6.

7. 8.

9.

10.
x2

- 2x

x2
- 4

2x + 2

23 - x

2x2
+ 1

x2
- 1

2x - 16

x

x2
- 16

x

x - 16

For more complicated functions we are often content with knowing whether the end be-
havior is bounded or unbounded in either direction.

94 CHAPTER 1 Functions and Graphs

SOLUTION When x is very large, the denominator in each of these func-
tions is almost the same number as . If we replace in each denominator by

and then reduce the fractions, we get the simpler functions

(a) 1close to for large x2 (b)

(c) (d)

So, we look for functions that have end behavior resembling, respectively, the func-
tions

(a) (b) (c) (d) .

Graph (iv) approaches the line . Graph (iii) approaches the line . 
Graph (ii) approaches the line . Graph (i) approaches the parabola .
So, (a) matches (iv), (b) matches (iii), (c) matches (ii), and (d) matches (i).

Now try Exercise 65.

y = 3x2y = 3x
y = 3y = 0

y = 3x2y = 3xy = 3y = 0

y = 3x2.y = 3x

y = 3y = 0y =

3
x

x2
x2

+ 1x2
x2

+ 1Tips on Zooming
Zooming out is often a good way to investigate
end behavior with a graphing calculator. Here are
some useful zooming tips:

• Start with a “square” window.

• Set Xscl and Yscl to zero to avoid fuzzy axes.

• Be sure the zoom factors are both the same.
(They will be unless you change them.)

[–4.7, 4.7] by [–3.5, 3.5]

(i)

[–4.7, 4.7] by [–3.5, 3.5]

(ii)

[–4.7, 4.7] by [–3.5, 3.5]

(iii)

[–4.7, 4.7] by [–3.5, 3.5]

(iv)

FIGURE 1.35 Match the graphs with the functions in Example 11.

5. 6.
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SECTION 1.2 Functions and Their Properties 95

In Exercises 25–28, state whether each labeled point identifies a local
minimum, a local maximum, or neither. Identify intervals on which the
function is decreasing and increasing.

25. 26.

y

x

y

x

7. 8.

In Exercises 9–16, find the domain of the function algebraically and
support your answer graphically.

9. 10.

11. 12.

13. 14.

15. 16.

In Exercises 17–20, find the range of the function.

17.

18.

19. 20.

In Exercises 21–24, graph the function and tell whether or not it has a
point of discontinuity at . If there is a discontinuity, tell whether it
is removable or nonremovable.

21. 22.

23. 24. g1x2 =

x

x - 2
ƒ1x2 =

ƒx ƒ

x

h1x2 =

x3
+ x

x
g1x2 =

3
x

x = 0

g1x2 =

3 + x2

4 - x2
ƒ1x2 =

x2

1 - x2

g1x2 = 5 + 24 - x

ƒ1x2 = 10 - x2

ƒ1x2 = 2x4
- 16x2h1x2 =

24 - x

1x + 121x2
+ 12

h1x2 =

24 - x2

x - 3
g1x2 =

x

x2
- 5x

ƒ1x2 =

1
x

+

5

x - 3
ƒ1x2 =

3x - 1

1x + 321x - 12

h1x2 =

5

x - 3
ƒ1x2 = x2

+ 4

y

x

(�1, 4)

(2, 2)

(5, 5)

y

x

(1, 2)

(3, 3)

(5, 7)

y

x

(�1, 3)

(1, 5)

(3, 3)

(5, 1)

y

x(�1, 1)

(1, 6)

(3, 1)

(5, 4)

27. 28.

In Exercises 29–34, graph the function and identify intervals on which
the function is increasing, decreasing, or constant.

29.

30.

31.

32.

33.

34.

In Exercises 35–40, determine whether the function is bounded above,
bounded below, or bounded on its domain.

35. 36.

37. 38.

39. 40.

In Exercises 41–46, use a grapher to find all local maxima and minima
and the values of x where they occur. Give values rounded to two deci-
mal places.

41. 42.

43. 44.

45. 46. g1x2 = x ƒ2x + 5 ƒh1x2 = x22x + 4

ƒ1x2 = 1x + 321x - 122h1x2 = -x3
+ 2x - 3

g1x2 = x3
- 4x + 1ƒ1x2 = 4 - x + x2

y = x - x3y = 21 - x2

y = 2-xy = 2x

y = 2 - x2y = 32

ƒ1x2 = x3
- x2

- 2x

g1x2 = 3 - 1x - 122
h1x2 = 0.51x + 222 - 1

g1x2 = ƒx + 2 ƒ + ƒx - 1 ƒ - 2

ƒ1x2 = ƒx + 1 ƒ + ƒx - 1 ƒ - 3

ƒ1x2 = ƒx + 2 ƒ - 1

In Exercises 47–54, state whether the function is odd, even, or neither.
Support graphically and confirm algebraically.

47. 48.

49. 50.

51. 52.

53. 54.

In Exercises 55–62, use a method of your choice to find all horizontal
and vertical asymptotes of the function.

55. 56.

57. 58.

59. 60.

61. 62. h1x2 =

2x - 4

x2
- 4

g1x2 =

4x - 4

x3
- 8

p1x2 =

4

x2
+ 1

ƒ1x2 =

x2
+ 2

x2
- 1

q1x2 = 1.5xg1x2 =

x + 2

3 - x

q1x2 =

x - 1
x

ƒ1x2 =

x

x - 1

h1x2 =

1
x

g1x2 = 2x3
- 3x

ƒ1x2 = x3
+ 0.04x2

+ 3ƒ1x2 = -x2
+ 0.03x + 5

g1x2 =

3

1 + x2
ƒ1x2 = 2x2

+ 2

g1x2 = x3ƒ1x2 = 2x4
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(b) Show how you can add a single point to the graph of ƒ and
get a graph that does intersect its vertical asymptote.

(c) Is the graph in (b) the graph of a function?

70. Writing to Learn Explain why a graph cannot have
more than two horizontal asymptotes.

Standardized Test Questions
71. True or False The graph of function ƒ is defined as the

set of all points 1x, ƒ1x22, where x is in the domain of ƒ. Justify
your answer.

72. True or False A relation that is symmetric with respect
to the x-axis cannot be a function. Justify your answer.

In Exercises 73–76, answer the question without using a calculator.

73. Multiple Choice Which function is continuous?

(A) Number of children enrolled in a particular school as a
function of time

(B) Outdoor temperature as a function of time

(C) Cost of U.S. postage as a function of the weight of the letter

(D) Price of a stock as a function of time

(E) Number of soft drinks sold at a ballpark as a function of
outdoor temperature

74. Multiple Choice Which function is not continuous?

(A) Your altitude as a function of time while flying from Reno
to Dallas

(B) Time of travel from Miami to Pensacola as a function of
driving speed

(C) Number of balls that can fit completely inside a particular
box as a function of the radius of the balls

(D) Area of a circle as a function of radius

(E) Weight of a particular baby as a function of time after
birth

75. Decreasing Function Which function is decreasing?

(A) Outdoor temperature as a function of time

(B) The Dow Jones Industrial Average as a function of time

(C) Air pressure in the Earth’s atmosphere as a function of alti-
tude

(D) World population since 1900 as a function of time

(E) Water pressure in the ocean as a function of depth

76. Increasing or Decreasing Which function cannot be
classified as either increasing or decreasing?

(A) Weight of a lead brick as a function of volume

(B) Strength of a radio signal as a function of distance from the
transmitter

(C) Time of travel from Buffalo to Syracuse as a function of
driving speed

(D) Area of a square as a function of side length

(E) Height of a swinging pendulum as a function of time

96 CHAPTER 1 Functions and Graphs

[–4.7, 4.7] by [–3.1, 3.1]
(a)

[–4.7, 4.7] by [–3.1, 3.1]
(b)

[–4.7, 4.7] by [–3.1, 3.1]
(c)

[–4.7, 4.7] by [–3.1, 3.1]
(d)

67. Can a Graph Cross Its Own Asymptote? The
Greek roots of the word “asymptote” mean “not meeting,”
since graphs tend to approach, but not meet, their asymptotes.
Which of the following functions have graphs that do intersect
their horizontal asymptotes?

(a)

(b)

(c)

68. Can a Graph Have Two Horizontal Asymptotes?
Although most graphs have at most one horizontal asymptote,
it is possible for a graph to have more than one. Which of the
following functions have graphs with more than one horizontal
asymptote?

(a)

(b)

(c)

69. Can a Graph Intersect Its Own Vertical

Asymptote? Graph the function 

(a) The graph of this function does not intersect its vertical 
asymptote. Explain why it does not.

ƒ1x2 =

x - ƒx ƒ

x2
+ 1.

h1x2 =

x

2x2
- 4

g1x2 =

ƒx - 1 ƒ

x2
- 4

ƒ1x2 =

ƒx3
+ 1 ƒ

8 - x3

h1x2 =

x2

x3
+ 1

g1x2 =

x

x2
+ 1

ƒ1x2 =

x

x2
- 1

In Exercises 63–66, match the function with the corresponding graph
by considering end behavior and asymptotes. All graphs are shown in
the same viewing window.

63. 64.

65. 66. y =

x3
+ 2

2x2
+ 1

y =

x + 2

2x2
+ 1

y =

x2
+ 2

2x + 1
y =

x + 2

2x + 1
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Explorations
77. Bounded Functions As promised in Example 7 of this

section, we will give you a chance to prove algebraically that
is bounded.

(a) Graph the function and find the smallest integer k that ap-
pears to be an upper bound.

(b) Verify that by proving the equivalent in-
equality . (Use the quadratic formula to
show that the quadratic has no real zeros.)

(c) From the graph, find the greatest integer k that appears to
be a lower bound.

(d) Verify that by proving the equivalent in-
equality .

78. Baylor School Grade Point Averages Baylor
School uses a sliding scale to convert the percentage grades on
its transcripts to grade point averages (GPAs). Table 1.9 shows
the GPA equivalents for selected grades.

kx2
- x + k 6 0

x/11 + x22 7 k

kx2
- x + k 7 0

x/11 + x22 6 k

p1x2 = x/11 + x22

(d)

(e)

80. Group Activity Sketch (freehand) a graph of a function
ƒ with domain all real numbers that satisfies all of the follow-
ing conditions:

(a) ƒ is decreasing on and decreasing on 

(b) ƒ has a nonremovable point of discontinuity at 

(c) ƒ has a horizontal asymptote at 

(d)

(e) ƒ has a vertical asymptote at 

81. Group Activity Sketch (freehand) a graph of a function
ƒ with domain all real numbers that satisfies all of the follow-
ing conditions:

(a) ƒ is continuous for all x;

(b) ƒ is an even function;

(c) ƒ is increasing on and decreasing on 

(d)

82. Group Activity Get together with your classmates in
groups of two or three. Sketch a graph of a function, but do not
show it to the other members of your group. Using the lan-
guage of functions (as in Exercises 79–81), describe your func-
tion as completely as you can. Exchange descriptions with the
others in your group and see if you can reproduce each other’s
graphs.

Extending the Ideas
83. A function that is bounded above has an infinite number of up-

per bounds, but there is always a least upper bound, i.e., an
upper bound that is less than all the others. This least upper
bound may or may not be in the range of ƒ. For each of the fol-
lowing functions, find the least upper bound and tell whether or
not it is in the range of the function.

(a)

(b)

(c)

(d)

(e)

84. Writing to Learn A continuous function ƒ has domain
all real numbers. If and , explain why ƒ
must have at least one zero in the interval . (This gener-
alizes to a property of continuous functions known as the Inter-
mediate Value Theorem.)

3-1, 14
ƒ112 = -5ƒ1-12 = 5

q1x2 =

4x

x2
+ 2x + 1

p1x2 = 2 sin 1x2
h1x2 =

1 - x

x2

g1x2 =

3x2

3 + x2

ƒ1x2 = 2 - 0.8x2

ƒ122 = 3.

32, q2;30, 24

x = 0.

ƒ102 = 0;

y = 1;

x = 0;

10, q2;1- q , 02

ƒ132 = 0.

ƒ102 = ƒ152 = 2;

SECTION 1.2 Functions and Their Properties 97

Table 1.9 Converting Grades

Grade 1x2 GPA 1y2
60 0.00
65 1.00
70 2.05
75 2.57
80 3.00
85 3.36
90 3.69
95 4.00

100 4.28

Source: Baylor School College Counselor.

(a) Considering GPA 1y2 as a function of percentage grade
1x2, is it increasing, decreasing, constant, or none of these?

(b) Make a table showing the change in GPA as you
move down the list. (See Exploration 1.)

(c) Make a table showing the change in as you move down
the list. (This is .) Considering the change in
GPA as a function of percentage grade 1x2, is it increasing,
decreasing, constant, or none of these?

(d) In general, what can you say about the shape of the graph
if y is an increasing function of x and is a decreasing
function of x?

(e) Sketch the graph of a function y of x such that y is a de-
creasing function of x and is an increasing function of
x.

79. Group Activity Sketch (freehand) a graph of a function
ƒ with domain all real numbers that satisfies all of the follow-
ing conditions:

(a) ƒ is continuous for all x;

(b) ƒ is increasing on and on 

(c) ƒ is decreasing on and on 35, q2;30, 34
33, 54;1- q , 04

¢y

¢y

1¢y2¢¢y
¢y

1¢y2
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85. Proving a Theorem Prove that the graph of every odd
function with domain all real numbers must pass through the
origin.

86. Finding the Range Graph the function 

in the window by .

(a) What is the apparent horizontal asymptote of the graph? 

(b) Based on your graph, determine the apparent range of ƒ. 

(c) Show algebraically that for all x,

thus confirming your conjecture in part (b).

-1 …

3x2
- 1

2x2
+ 1

6 1.5

3-2, 243-6, 64
f 1x2 =

3x2
- 1

2x2
+ 1

87. Looking Ahead to Calculus A key theorem in
calculus, the Extreme Value Theorem, states, if a function ƒ is
continuous on a closed interval 3a, b4 then ƒ has both a maxi-
mum value and a minimum value on the interval. For each of
the following functions, verify that the function is continuous
on the given interval and find the maximum and minimum 
values of the function and the x values at which these extrema
occur.

(a)

(b)

(c)

(d) ƒ1x2 = 2x2
+ 9, 3-4, 44

ƒ1x2 = ƒx + 1 ƒ + 2, 3-4, 14
ƒ1x2 =

1
x

 , 31, 54
ƒ1x2 = x2

- 3, 3-2, 44
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