Final Exam Review **Geometry Semester 1**

Name:_____

Prove and justify- Final Review part 3

1- What else must you know to prove the triangles congruent by ASA? By SAS?

$$\angle ACD \cong \angle CAB; \overline{AB} \cong \overline{CD}$$

 $\angle ACD \cong \angle CAB; \overline{AD} \cong \overline{BC}$

c.
$$\angle ADC \cong \angle CAB; \overline{AD} \cong \overline{BC}$$

d. $\angle ACD \cong \angle CAB; \overline{AD} \cong \overline{AC}$

d.
$$\angle ACD \cong \angle CAB; \overline{AD} \cong \overline{AC}$$

2- Name the theorem or postulate that lets you immediately conclude $\triangle ABD \cong \triangle CBD$.

SAS

b.

ASA

c.

AAS

none of these d.

Reasons

3- Supply the missing reasons to complete the proof.

Given: $\angle Q \cong \angle T$ and $\overline{QR} \cong \overline{TR}$

Prove: $\overline{PR} \cong \overline{SR}$

	11 1
2	statement

$1. \angle Q \cong \angle T$ and
$\overline{QR} \cong \overline{TR}$
2. ∠PRQ ≅ ∠SRT

2.
$$\angle PRQ \cong \angle SRT$$
 2. Vertical
3. $\triangle PRQ \cong \triangle SRT$ 3. ?
4. $\overline{PR} \cong \overline{SR}$ 4. ?

4. Supply the reasons missing from the proof shown below.

Given: $\overline{AB} \cong \overline{AC}$, $\angle BAD \cong \angle CAD$

Prove: \overline{AD} bisects \overline{BC}

a.	ASA; CPCTC	
b.	SAS; Reflexive Property	

StatementsReasons1. $\overline{AB} \cong \overline{AC}$ 1. Given2. $\angle BAD \cong \angle CAD$ 2. Given3. $\overline{AD} \cong \overline{AD}$ 3. Reflexive Property4. $\triangle BAD \cong \triangle CAD$ 4. __?5. $\overline{BD} \cong \overline{CD}$ 5. __?6. \overline{AD} bisects \overline{BC} 6. Def. of segment bisector

SSS; Reflexive Property SAS; CPCTC

Use the figure below to answer the next 3 questions.

- 5. Which statement proves lines m and n are parallel?
 - A. $\angle 8$ & $\angle 2$ are alternate exterior angles and supplementary
- C. ∠7 & ∠2 are same-side exterior angles and supplementary
- B. ∠7 & ∠3 are alternate exterior angles and congruent
- D. ∠3 & ∠5 are same-side exterior angles and supplementary
- 6. Which statement proves lines m and n are parallel?
- (A.)∠8 & ∠2 are alternate exterior angles and congruent
- C. ∠7 & ∠1 are same-side exterior angles and supplementary
- B. ∠7 & ∠3 are alternate exterior angles and supplementary
- D. ∠3 & ∠5 are alternate interior angles and supplementary

- 7. Which statement proves lines m and n are parallel?
- A. $\angle 8$ & $\angle 2$ are alternate interior angles and supplementary
- C. $\angle 7$ & $\angle 2$ are same-side interior angles and supplementary
- B. $\angle 7$ & $\angle 3$ are alternate interior angles and congruent
- $\angle 3$ & $\angle 5$ are alternate interior angles and congruent
- 8. Is there enough information to conclude that the two triangles are congruent? If so, what is a correct congruence statement?

- Yes; $\triangle CAB \cong \triangle DAC$.
- Yes; $\triangle ACB \cong \triangle ADC$.
- Yes; $\triangle ABC \cong \triangle ACD$.
- No, the triangles cannot be proven congruent.

9. Based on the given information, can you conclude that $\triangle QRS \cong \triangle TUV$? Explain.

Given: $\overline{QR} \cong \overline{TU}$, $\overline{QS} \cong \overline{TV}$, and $\angle R \cong \angle U$

Explanations vary

10. Explain how you can use SSS, SAS, ASA, or AAS with CPCTC to prove that $\angle D \cong \angle B$.

Explanations Vary

After proving congruence, use

CPCTC to prove $\angle D\cong \angle B$.

11. Is $\triangle PQS \cong \triangle RQS$ by HL? If so, name the legs that allow the use of HL.

12. Separate and redraw $\triangle ABC$ and $\triangle CDA$. Mark the corresponding sides and angles.

13. Write a two column proof to show that $\triangle ABC \cong \triangle DEC$.

Given: $\overline{AC} \cong \overline{DC}$ and $\overline{BC} \cong \overline{CE}$

Proofs vary

14. Complete the below proof

Given m//n Prove that <3 and <6 are supplementary

Statements	Reasons
1. m//n	1. Given
2. <3 ≅ <5	2. ALT. INT. LS
3. 25 and Lle are supp.	3. Linear Pair Theorem
4. <3 and <6 are supp.	4. Substition Prop.

15.

Addition Property	Substitution Property
If $a=b$,	If $a=b$,
then $a + c = b + c$.	then b can substitute for a in any equation.
Subtraction Property	Reflexive Property
If $a = b$,	a = a
then $a-c=b-c$.	
Multiplication Property	Symmetric Property
If $a = b$,	If $a = b$,
then $ac = bc$.	then $b=a$.
Division Property	Transitive Property
If $a = b$,	If $a=b$,
then $\frac{a}{-} = \frac{b}{-}$; $c \neq 0$.	and $b=c$,
c c	then $a=c$.

Fill in the blank to give a reason for the statement below. You may refer to the Properties of Equality shown.

If $m \angle 1 = m \angle 2$ and $m \angle 2 = m \angle 3$, then $m \angle 1 = m \angle 3$ by the Property of equality. Transitive

Match the correct reasons to the statements of this algebraic proof. 16.

> Reflexive Property of Equality Multiplication Property of Equality Division Property of Equality Substitution Addition Property of Equality Subtraction Property of Equality

Statement	Reason	
$1.\frac{3x}{6} = 4$	1. Given equation	
2.3x = 24	2.	
3. x = 8	3. B	

2. Multiplication Property
of Equality

3. Division Property of
Equality