1. ABCD is a trapezoid (one pair of parallel sides). Determine a and b and justify each relation.

2.

Draw a pair of parallel lines with a transversal passing through the lines (and not perpendicular to the lines). Number the angles formed in your figure as they are numbered in the image shown. Think about line b as a translation of line a. Then $\angle 6$ would be the image of $\angle 2$ under the translation and therefore be congruent. What other angles are congruent due to the translation?

∠5 and ∠1

A. $\angle 6$ and $\angle 4$

 $\angle 8$ and $\angle 2$

 $\angle 5$ and $\angle 1$ C. $\angle 7$ and $\angle 3$ $\angle 5$ and $\angle 3$

B. $\angle 7$ and $\angle 1$

 $\angle 8$ and $\angle 4$

 $\angle 5$ and $\angle 1$

D. $\angle 7$ and $\angle 4$

 $\angle 8$ and $\angle 3$

3.

If line r and line s are parallel. If possible, justify each of the following relations.

A. 23 ≈ 26 Not possible

C. 21 = 27 Alternate Exterior Angles

B. ∠1 \(\sigma \) \(\sigma \) \(\lefta \

D. ∠3 \ ∠7 Corresponding Angles

4. From the picture below, Joe thinks that line r might be parallel to line s.

Which strategy could he use to test his conjecture?

- A. Measure angles $\angle 2$ and $\angle 4$ to see if they are congruent.
- B. Measure angles $\angle 2$ and $\angle 5$ to see if they are congruent.
- \bigcirc Measure angles $\angle 2$ and $\angle 6$ to see if they are congruent.
- **D.** Measure angles $\angle 2$ and $\angle 7$ to see if they are congruent.

5.

Line j is parallel to line m, and line t is not perpendicular to either line.

Indicate the type of angles and the relationship for the following pairs of angles

B. ∠A and ∠H ≅

C. ∠A and ∠E ≅

D. ∠A and ∠G Supplementary

Vertical Alternate Exterior

Corresponding

No Direct Relationship

6.

If $m < A = x^2 + 1$, and m < H = 2x + 4, determine m < F. Justify each equation

m LF = 178° or 170°

Angles 6 and 4 are supplementary. Drag the tiles into the appropriate slots to prove that lines j and k are parallel.

Statements	Reasons
1. ∠6 and ∠4 are supplementary.	1. Given
2. A mc6+mc4=180°	2. Def. of supplementary
3. B L2 and L4 are supplement	3. Linear Pair Theorem
$4. \text{m} \angle 2 + \text{m} \angle 4 = 180^{\circ}$	4. Def. of supplementary
5. m∠6 + m∠4 = m∠2 + m∠4	5. C Substitution
6. D mele = m2	6. E Subtraction
7. i k	Corresponding Ls =

8. Given: m | n

Prove: $\angle 6 \cong \angle 3$

	Statements		Reasons
1)	mlln	1)	GIVEN
2)		2)	
	1		Vaca
3)	Ans we	13)	Varia
4)	L6 ≈ 13	4)	Substitution
	_		

9. Create a proof for the following:

Given: a || b

Prove: $m \angle 9 + m \angle 14 = 180^{\circ}$

Answers Vary

10. Prove the following:

Given: allb; clld

Prove: $\angle 1 \cong \angle 13$

Answers Vary