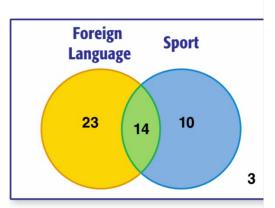

- So far:
 - · Experimental and theoretical probability in one variable
 - More trials = better results!
- Today:
 - Calculating probability with TWO variables
 - · Using two-way frequency tables

p. 9 Two Way Tables

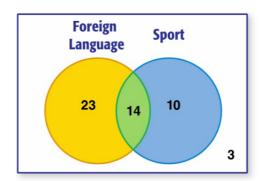

Two Variables: Venn Diagram

- 1. How many students are taking a foreign language?
- 2. How many students play a sport?
- 3. How many students do both?
- 4. How many students do not play a sport and do not take a foreign language?
- 5. How many students play a sport but do not take a foreign language?

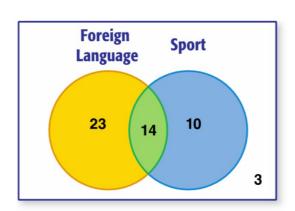
- 1. What is the probability they are taking a foreign language AND a sport?
- 2. What is the probability they don't play a sport or take a foreign language?
- 3. What is the probability they are playing a sport?

1) P (F.L. and Sport)

total $\frac{14}{50} = \frac{7}{25}$


2) P(Neither)

3


50

3) $P(Sport) = \frac{24}{50} = \frac{12}{25}$

Create a **two-way table** containing the information from the venn diagram.

	Play a Sport	Do Not Play a Sport	Total
Take a Foreign Language	14		
Do Not Take a Foreign Language			
Total			

	Play a Sport	Do Not Play a Sport	Total
Take a Foreign Language	14	23	14 + 23 or 37
Do Not Take a Foreign Language	10	3	10 + 3 or 13
Total	14 + 10 or 24	23 + 3 or 26	50