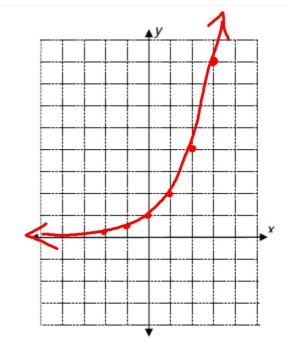
VOCABULARY

Exponential function – any function written in the form $y = ab^x$, where x is a real number, $a \ne 0$, b > 0, and $b \ne 1$. If b > 1, the function models exponential growt with a growth factor b. When 0 < b < 1, the function models exponential decay with decay factor b.

Exponential growth – any function in the form $y = ab^x$ with b > 1

Exponential decay – any function in the form $y = ab^x$ with 0 < b < 1

f(x)=2x Growth $f(x) = \left(\frac{1}{2}\right)$ Decay

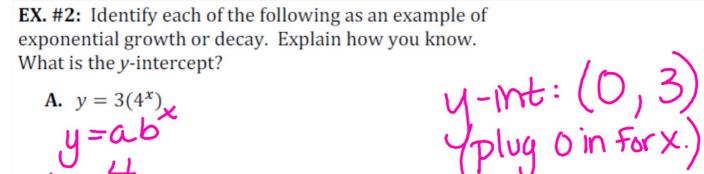

Asymptote – a line that a graph approaches as *x* or *y* increases in absolute value.

Growth factor – in an exponential function of the form $y = ab^x$, b is the growth factor if b > 1.

Decay factor – in an exponential function of the form $y = ab^x$, b is the decay factor if 0 < b < 1.

EX #1: Graph $y = 2^x$

X	2 ^x	У
-2	2	于
-1	2	2
0	2.	
1	22	2
2	2	4
3	23	8

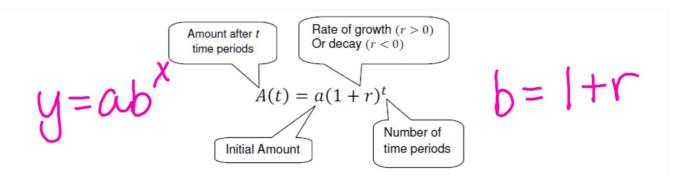


Domain: (- 00,00) For both

Range: $\underline{\mathsf{Gruth}}:(0,\infty)\,\underline{\mathsf{Decay}}:(0,\infty)$

Asymptote: y=0 for both

Key Points: Y-intercept (0,1)
No X-intercepts


A.
$$y = 3(4^x)_x$$

 $y = ab$
 $b = 4$
 $4 > 1$ Growth

B. $y = 11(0.75^x)$

y=abx

b= 0.75

C. You save \$2000 into a college savings account for four years. The account pays 6% interest annually.

EX. #3: Suppose you invest \$500 in a savings account that pays 3.5% annual interest. How much will be in the account after five years?

Growth
$$y = 500 (1.035)^{x}$$

$$y = 500(1.035)^{5}$$
 $(y = 1593.84)$