NAME: .

Part A: Exponential Story Problems

Write an exponential function for each situation. Show your work for c and d on a separate sneet of paper.								
1)	Mary is investing in an account. She puts \$2000 in an		Samantha bought a car for \$23,000. The car					
,	account that earns 4% each year.		depreciates in value by 12% each year.					
a)	Is this growth or decay? Why?	a)	Is this growth or decay? Why?					
٠,	growth "earns"		f					
b)	Write a function to model the value of the account	b)	Write a function to model the value of the car after x years. $\Omega = 23000 \Gamma = 12\% = 0.12$					
	after x years. $a = 2000$ $A(+) = 2000 (1.04)^{c}$		years. $C = 25000 + 126 = 0.12 = 0.88$					
	(= 0.0T		A(+) = 23000 (0.88) t					
	b=1+0.04=1.04		Find the value of the car after 2 years.					
c)	Find the value of the account after 5 years.	c)	17811.20					
	$t=5 \rightarrow 2000(1.04)^5 = 2433.31$							
3)	Bilal bought a house for \$120,000. It appreciates in	4)	The small town of Rosea has a population of 45,000					
	value by 3.2% each year.	,	people. It grows at a rate of 2.3% per year.					
a)	Is this growth or decay? Why?	a)	Is this growth or decay? Why?					
	appreciates	ل ما	Write a function to model the population of the town					
b)	Write a function to model the value of the house after	D)	after x years. $\alpha = 45000$ $\gamma = 2.3\% \Rightarrow 0.02$					
	x years. $a=120000$ A(t)= $12000(1.032)$		4 6-14-6-23-1					
	b=1+0.032=1.032		45000(1.023)					
c)	Find the value of the house after 5 years.	c)	Find the population after 20 years.					
		2	15000(1.073)20= 70912.80 people					
٦	t=5 → 12000 (1.032) 5= 140469							
5)	An initial dose of 20 mg of medication decays at a rate	6)	Cancer cells in a particular type of tumor increase at a rate of 12% each week. Suppose you start with 1					
	of 40% each hour.		cancer cell.					
a)	Is this growth or decay) Why?	2)	Is this growth or decay? Why?					
	and the amount of modication in	a)	is this growth of decay. Why.					
b)	Write a function to model the amount of medication in	b)	Write a function to model the number of cancer cells					
	x hours. $a = 20$ A(1)=20(0.6)	5,	after x weeks. $Q(t) = /(1.12)^{t}$					
	r=0.4 b=1-0.4=0.6							
c)	for direction in 2 hours	c)	Find the number of cells after 1 year. = 52 weeks					
()	$+=3 \rightarrow 20(0.6)^3 = 4.32$		1/1.12) = = 362.52 ceus					
47	In how many hours will there be less than 1 mg left in	d)	Find how many weeks it will take for there to be more					
",	the blood stream? t = (0 hours)		than 100,000 cancer cells. $t = 102$ week					
C	raph ->	1	00000 = /(1.12) t -> look at table.					
Ĭ	pole at TABLE for U was than I							
7)	Sarah decided for her New Year's Resolution that she	8)	Leila buys some office furniture for \$5000 for her					
	was going to start exercising and started with 10		business. A depreciation table shows that it					
	minutes. She said "I'll do 10% more each day."		depreciates in value by 9% each year.) Is this growth or decay? Why?					
a)	Is this growth or decay? Why?	a) is this growth of decay: why:					
	Write a function to model the # of minutes after v	h) Write a function to model the value of the furniture					
(b)	10 · da							
	days $a = 10 \text{ mouses}$ $r = 10 \text{ i.e.} = 0.10 \text{ b} = 1.10 \text{ 10(1.10)}^2$	b	after x years. $5000(0.91)^{4}$					
c)	- I I I C . I	C) Find the value of the furniture after 3 years.					
0	+=7 days 10(1.10) = 19.4872 min		5707 (0.91) 3 = 3767.86					
4,	Find how many days it will take for her to be exercising	C	d) Find how many years it will take for the furniture to be					
"	24 hours a day!		worth \$1000. 4-17 1100 CC					
	- days		worth \$1000.					
	minutes -> 24×60=1440 minutes)							
Clook for MINUTES in								
	take not hours)							

HOUR:

DATE:

PART B: Determining Growth and Decay Factors

Use the given information to determine the rate of growth or decay, r, and the growth/decay factor, b. For the story problems, define the variables x and y and write an equation. $\gamma = b - 1$ $b = 1 + \gamma$

	Growth or decay?	Rate (r)	Factor (b)	Equation?
1. $y = 6(1.3)^x$	Growth	r=0.73=30%	b=1.3	
2. y = 13,000(0.84) ^x	Decay	r=-0,10=-169	%b=0.84	
3. $y = 98(1.06)^x$	Growth	r=0.06 = 6%	6=1.06	
4. $y = 0.2(3)^x$	Growth	r=2=200%	b=3	
5. A \$15,000 car depreciates at a rate of 8% per year. x=	Decay	r= -0.08	b = 1 - 0.08 b = 0.92	15000 (0.92)2
6. Francois bought a Monet painting for \$100,000. It appreciates in value by 8% each year. x=	Cnowth	r=0.08	b=1.08 b=1.08	100000 (1.08)2
7. The population of a town of 30,000 increases at a rate of 3% per year. Write an equation to model the situation. x=	Crowth	v=\$0.03	b=1+0.03 b=1.03	30000 (1,03)2
8. Frank turns into a Zombie and infects other people at a rate of 100% each week (every zombie infects one other person per week) x=	Growth	r=100% r=1	b=1+1 b=2	1 (2)x
9. Shenia bought a computer for \$3000. It depreciates at a rate of 22% each year. x=yearS y=computer_value	Decay	r = -0.22	b=1-0.22 b=0.78	3000(0.78)*
10. A bird population starts at 45 in a particular region and is increasing at a rate of 5% each year. x=	Growth	r=0.05	b=1105	45 (1.05) ^x