Unit 3

Congruent Triangles Review

Name:

Unit 3

Congruent Triangles Review

Name:

I can prove that triangles are congruent using valid theorems/postulates. (G-CO.8)

1. What congruence shortcuts can you use to prove that triangles are congruent? List all ψ of the methods.

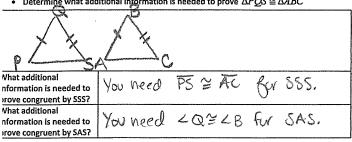
ASA, AAS, SAS, SSS

 For each of the following triangles, determine which theorem/postulate could be used to show that the triangles are congruent. If they are congruent, write a congruence statement, if there is not enough information, explain why you can not prove the triangle congruent.

'rlangles: >on't forget to mark additional sides/angles which are ongruent!	Congruent? By which theorem or postulate? SAS CQAB	If the triangles are congruent, write a congruence statement. If the triangles are NOT congruent, explain why they are not congruent.
AB 2 AB Reflexive		△QAB ≅ △PBA
Vertical Angles	ASA	△ABC º △DEC
A F B	SSA	False shortcut.

Jnit 3

Congruent Triangles Review


Name:

can prove that triangles are congruent using valid theorems/postulates. (G-CO.8)

3. Suppose $\overline{PQ}\cong \overline{AB}$ and $\overline{QS}\cong \overline{BC}$.

Draw two triangles representing this situation.

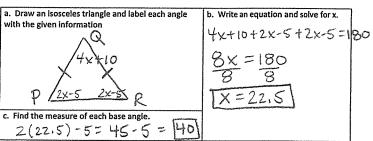
• Determine what additional information is needed to prove $\Delta PQS \cong \Delta ABC$

- Complete the following proof (you may not have to use all of the blanks)

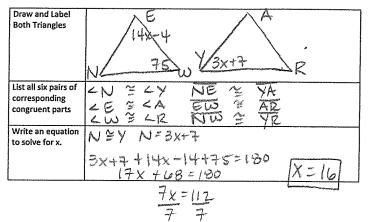
Given AB∥ED, AC≅EC

<ACB \(\text{CECD} \) Vertical
</pre>
< BAC \(\text{C} \text{CDEC} \) AH. Int.</p>
ASA

Prove: △ABC≅△EDC


Statements	Justifications	7.
ABILED, ACCEC	¹ Given	L
LACE & LECT	2 Vertical angles are congre	nt
4BAC = 4DEC	3. Alternate Interior Angles are	
· ABC = A EDC		Ų
•	5.	
•	5.	

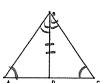
I can use the definition of congruent triangles and corresponding parts to solve problems. (G-CO.7)


5. Given that Δ LMN $\cong \Delta$ PQR, complete the following congruence statements:

 $\angle L \cong \angle P \qquad \boxed{MN} \cong \boxed{PR} \cong$

6. In an isosceles triangle PQR, $\overline{PQ}\cong \overline{QR}$, the measure of the vertex angle is (4x + 10) The measure of each base angle is (2x - 5).

7. Given: $\triangle NEW \cong \triangle YAR$. Let $m \angle E = (14x - 4)^\circ$, $m \angle Y = (3x + 7)^\circ$ and $m \angle W = 75^\circ$

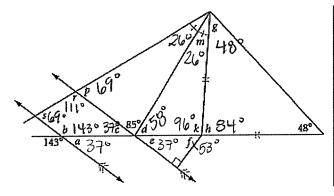

Unit 3

Congruent Triangles Review

Name

I can prove theorems about triangles and use these theorems to solve problems.(G-CO.10)

8. Write a proof for the following, all spaces may not be used:



Given: $\angle A \cong \angle C$ Prove: $\overline{AB} \cong \overline{CB}$

Statements	Justifications	
A LA Z C	Given	
2. Construct \overline{BD} , the angle bisector of $\angle ABC$.	For each angle, there is a unique angle bisector.	
A ZABD Z CCBD	Definition of bisectu	
BD & BD	Reflexive	
S ABD € △ CBD	AAS	
F. AB. & CB	CPCTC	
7.		

I can prove theorems about triangles and use these theorems to solve problems.(G-CO.10)

9. Find all the missing angle measures in the diagram show

