Name:

Hour: Date:

Part A: Determining Type of Equation

Examples

Based on each table, identify the shape of the graph.

Example 1

The difference in *y*-values is always two, a constant. The graph is linear and is verified at right.

Example 2

The first difference in *y*-values is not constant but the second difference is. The graph is quadratic and is verified at right.

Example 3

х		-3	-2	-1	0	1	2	3
у	,	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8
						1 2	2 4	1

The difference in y-values follows a pattern similar to the y-values. The graph is exponential and is verified

the y-values. The graph is exponential and is verified at right. (In this case, the difference pattern was exactly the same as the y-values. This is not always necessary.)

DIRECTIONS:

- 1. Determine if each of the data sets below are linear, quadratic, or exponential.
- **2. IF EXPONENTIAL:** Use exponential regression to determine the equation.

- 1	

x	-3	-2	-1	0	1	2	3
у	14	10	6	2	-2	-6	-10

2.

x	-3	-2	-1	0	1	2	3
y	1/2	1	2	4	8	16	32

3.

x	-3	-2	-1	0	1	2	3
y	21	12	5	0	-3	-4	-3

4.

x	-3	-2	-1	0	1	2	3
y	-16	-13	-10	– 7	-4	-1	2

5.

x	-3	-2	-1	0	1	2	3
у	4	8	16	32	64	128	256

6.

x	-3	-2	-1	0	1	2	3
у	1/27	1/9	1/3	1	3	9	27

Name:

Hour:

Date:

Part B: Exponential Equation from Two Data Points

Directions: Write exponential equations for each pair of points. (Hint: label x1, y1, x2, y2)

1. (0, 6), (1, 15)

4. (1, 0.2), (0, 20)

2. (1, 55), (0, 5)

5. (-1, 12), (0, 3)

3. (0, 500), (1, 150)

6. (0, 1500), (1, 1800)

Part C: Continuously Compounded Interest $A(t) = Pe^{rt}$

- 1. An amount of \$1,240.00 is deposited in a bank paying an annual interest rate of 2.85 %, compounded continuously. Find the balance after $2\frac{1}{2}$ years.
- 2. An amount of \$2,340.00 is deposited in a bank paying an annual interest rate of 3.1%, compounded continuously. Find the balance after 3 years.
- 3. An amount of \$2,000.00 is deposited in a bank paying an annual interest rate of 2.85 %, compounded continuously.
- (a) Find the balance after 3 years.
- (b) How long would it take for the money to double?
- 4. If Matt puts \$3000 into an account the pays 4.3% interest compounded continuously for 7 years how much will he have after 7 years?
- 5. Bailey has \$10,000 to put into a bank account where the interest rate is 6.7% compounded continuously. How long must she keep the money in the bank so that the principal doubles?