Name:	a = 4-intercep	+	Hour:	Date:				
	b= 42/y1	Part B: Expo	nential E	quation fr	om	Two Data Points	•	A
Directions: Write exponential equations for each pair of points. (Hint: label x1, y1, x2, y2)								
	_	=6		(2.5)×	4.	(1, 0.2), (0, 20) × ₂ y ₂ × ₁ y ₁	$a = 20$ $b = \frac{6.2}{20} =$	D.01
2.	(1,55), (0,5) a × ₂ y ₂ × ₁ y, b lower x is x,	=5 = <u>55</u> =11	y=5(1	2.44	5.	(-1, 12), (0, 3) X ₁ Y ₁ X ₂ Y ₂	$a=3$ $b=\frac{3}{12} = 0.2$	5 y=3(0.25
3.	(0,500), (1,150) $\times, y_1 \times_z y_2$	0=500	10	o(0.3)*	6.	(0, 1500), (1, 180 ×, y, × ₂ y	2 a=1500	47500(1.2
	1	b=800 15	= 0.3				b=1800 1500	1.2
Part C: Continuously Compounded Interest								
$A(t) = Pe^{rt}$								
	An amount of \$1,24 mpounded continu					nnual interest rate	of <u>2.85</u> %,	

$$P = a = 1240$$

 $C = 0.0285$
 $t = 2.5$
 $A(t) = 1240 \cdot e^{0.0285 \cdot 2.5} = 1331.57

2. An amount of \$2,340.00 is deposited in a bank paying an annual interest rate of 3.1%, compounded continuously. Find the balance after 3 years.

$$P = 2340$$
 | $2340 \cdot e^{0.031 \cdot 3} = 2568.06
 $t = 3$

3. An amount of \$2,000.00 is deposited in a bank paying an annual interest rate of 2.85 %, compounded continuously.

(a) Find the balance after 3 years.

$$P = 2000$$
 $r = 0.0285$
 $A(t) = 2000 \cdot e^{0.0285 \cdot 3} = 2160.95
 $t = 3$

(b) How long would it take for the money to double?

4. If Matt puts \$3000 into an account the pays 4.3% interest compounded continuously for 7 years how much will he have after 7 years?

5. Bailey has \$10,000 to put into a bank account where the interest rate is 6.7% compounded continuously. How long must she keep the money in the bank so that the principal doubles?

$$P = 10000$$
 Graph: $y = 10000e^{0.067t}$
 $r = 0.067$ $t = 11 years when $y720000$
 $t = ?$
 $A = 20000$ (doubled)$