Name:

Hour: Date:

Examples

Part A: Determining Type of Equation

Based on each table, identify the shape of the graph.

Example 1

The difference in y-values is always two, a constant. The graph is linear and is verified at right.

Example 2

The first difference in y-values is not constant but the second difference is. The graph is quadratic and is verified at right.

Example 3

the y-values. The graph is exponential and is verified at right. (In this case, the difference pattern was exactly the same as the y-values. This is not always necessary.)

DIRECTIONS:

- 1. Determine if each of the data sets below are linear, quadratic, or exponential.
- 2. IF EXPONENTIAL: Use exponential regression to determine the equation.

	1.	LINEAR						
	x	-3	-2	-1	0	1	2	3
	y	14	10	6	2	-2	-6	-10
SUBTRACT -4-4-4-4								
3. QUADRATIC								
	x	-3	-2	-1	0	1	2	3
Sugna	y	21	12	5	0	-3	-4	_3
Mice 5. 4 -7 -3 -3 -1 -1 -1								
	x	-3	-2	-1	0	1	2	3
	v	4	8	16	32	64	128	256
	1	~	in			10	15	
DIVIDE	1	7	12	1 7	1 ~	1 7		2
DIVIDE	1	3	くっと	KPQ	17	MA		2

