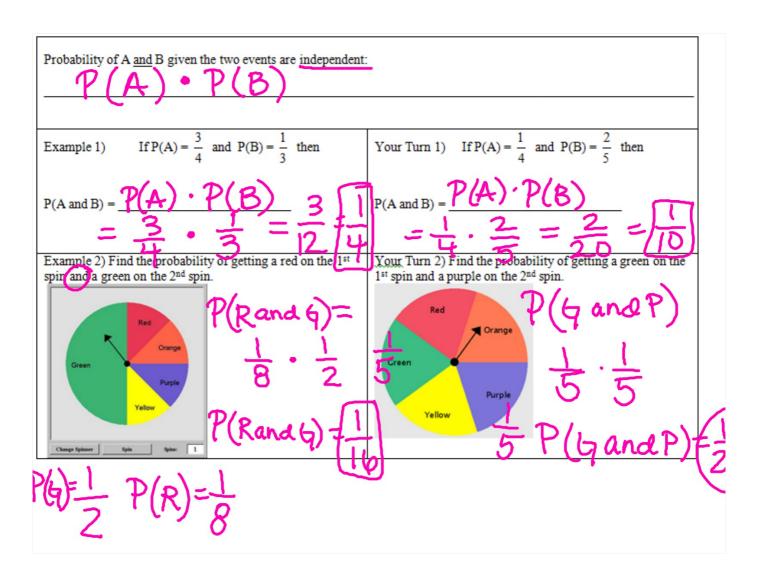
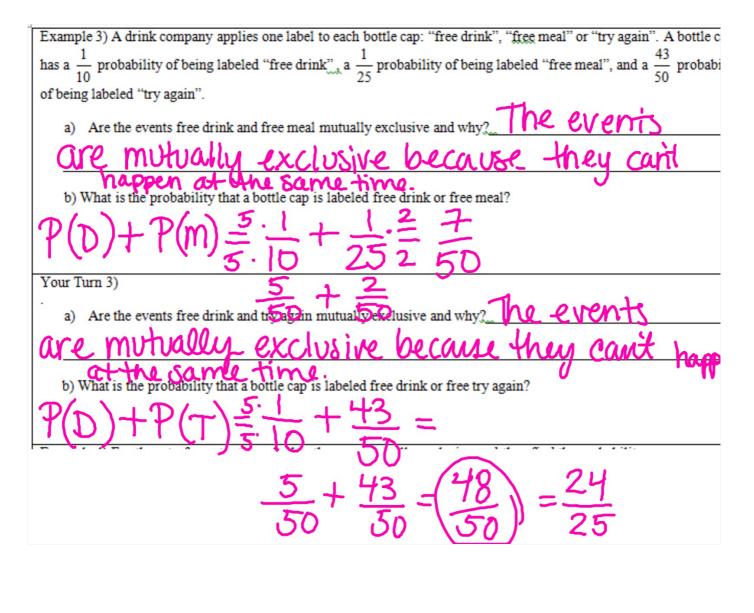
1.22.15

. What is the difference between theoretical and experimental probability? Theoretical: Calculating using math


Experimental: Using an active experiment to determine probability. What is the difference between a permutation and a combination?

Combination: Order does not matter.


Permutation: Order matters.

Dependent Events When the outcome of one event.	
Independent Events When the outcome of one event do not affect the second event.	<u>্</u>
Not affect the second event.	_

cample 1) Classify and explain each set of events as pendent or independent:	Your Turn 1) Classify and explain each set of events a dependent or independent:
Independent	*Selecting two Aces from a deck of cards when the 1st is replaced.
pinning a 4 and then a 4 again on a spinner.	*Flipping a coin twice and it is heads both times.
Independent	*Select a marble from a bag that contains marbles of 2
selecting two Aces from a deck of cards when the 1st one not replaced	colors. Put the marble aside ands then select another marble.
Dependent	Dependent
•	

Mutually Exclusive (M.E): Two events that cannot occur at the same time.
Not Mutually Exclusive (N.M.E): Two events that can occur at the same time.
at the same time.
Probability of A or B
Mutually Exclusive: $P(A \text{ or } B) = P(A) + P(B)$
Probability of A or B Mutually Exclusive: $P(A \text{ or } B) = P(A) + P(B)$ Not Mutually Exclusive: $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ or } B)$

Example 4) For the set of events state whether they are mutually exclusive and then find the probability.

Rolling a 5 or an odd on a # cube:

Not mutually exclusive, the can
happen at the same time.

Your Turn 4) For the set of events state whether they are mutually exclusive and then find the probability.

Rolling a prime or an odd on a # cube:

$$P(5) = \frac{1}{6}$$
 $P(5) + P(odd) - P(both)$
 $P(0dd) = \frac{3}{6}$ $\frac{1}{6} + \frac{3}{6} = \frac{1}{2}$
 $P(5)$ $\frac{3}{6} = \frac{1}{2}$
 $P(5)$ $\frac{3}{6} = \frac{1}{2}$