sin $\angle A = \frac{\text{length of leg opposite}}{\text{length of he hypotenuse}}$ The leg OPPOSITE $\angle A$ is $\frac{BC}{A}$ The HYPOTENUSE is $\frac{C}{A}$

Sine Ratio

Let $\triangle ABC$ be a right triangle with acute $\angle A$. The sine of $\angle A$ (written as $\sin A$) is defined:

Example 1: Find sine ratios.

Find sin A and sin B. Write each answer as a fraction and as a decimal. Round to four decimal places, if necessary.

Sin
$$A = \frac{CB}{BA} = \frac{8}{17} = 0.47$$

Sin $B = \frac{\overline{CA}}{\overline{BA}} = \frac{15}{17} = 0.88$

Example 2: Using sine.
Use a sine ratio to find the value of x. Round decimals to the nearest tenth.

a)

d)

Cosine Ratio

Let $\triangle ABC$ be a right triangle with acute $\angle A$. The cosine of $\angle A$ (written as $\cos A$) is defined:

Example 1: Find cosine ratios.

Find cos A and cos B. Write each answer as a fraction and as a decimal. Round to four decimal places, if necessary.

Cos A =
$$\frac{\overline{CA}}{\overline{AB}} = \frac{18}{30} = 0.6$$

Cos B = $\frac{\overline{BC}}{\overline{AB}} = \frac{24}{30} = 0.8$

Example 2: Using cosine.
Use a cosine ratio to find the value of x. Round decimals to the nearest tenth.

a)

b)

d)

Tangent Ratio

Let $\triangle ABC$ be a right triangle with acute $\angle A$. The tangent of $\angle A$ (written as tan A) is defined:

Example 1: Find tangent ratios Find the value of x to the nearest tenth.

a) 52

